6 research outputs found

    Engineering Gold Nanoparticle Interaction by PAMAM Dendrimer

    No full text
    Bare faceted gold nanoparticles (AuNPs) have a tendency to aggregate through a preferred attachment of the [111] surfaces. We have used fully atomistic classical molecular dynamics simulations to obtain a quantitative estimate of this surface interaction using umbrella sampling (US) at various temperatures. To tune this surface interaction, we use polyamidoamine (PAMAM) dendrimer to coat the gold surface under various conditions. We observe a spontaneous adsorption of the protonated as well as nonprotonated PAMAM dendrimer on the AuNP surface. The adsorbed dendrimer on the nanoparticle surface strongly alters the interaction between the nanoparticles. We calculate the interaction between dendrimer-coated AuNPs using US and show how the interaction between two bare faceted AuNPs can be tuned as a function of dendrimer concentration and charge (pH-dependent). With appropriate choice of the dendrimer concentration and charge, two strongly interacting AuNPs can be made effectively noninteracting. Our simulation results demonstrate a strategy to tune the nanoparticle interaction, which can help in engineering self-assembly of such nanoparticles

    PAMAM Dendrimer–Drug Interactions: Effect of pH on the Binding and Release Pattern

    No full text
    Understanding the dendrimer–drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), l-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM–drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM–Pbz and G5NP (nonprotonated)-PAMAM–Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host–guest systems

    Role of Specific Cations and Water Entropy on the Stability of Branched DNA Motif Structures

    No full text
    DNA three-way junctions (TWJs) are important intermediates in various cellular processes and are the simplest of a family of branched nucleic acids being considered as scaffolds for biomolecular nanotechnology. Branched nucleic acids are stabilized by divalent cations such as Mg<sup>2+</sup>, presumably due to condensation and neutralization of the negatively charged DNA backbone. However, electrostatic screening effects point to more complex solvation dynamics and a large role of interfacial waters in thermodynamic stability. Here, we report extensive computer simulations in explicit water and salt on a model TWJ and use free energy calculations to quantify the role of ionic character and strength on stability. We find that enthalpic stabilization of the first and second hydration shells by Mg<sup>2+</sup> accounts for 1/3 and all of the free energy gain in 50% and pure MgCl<sub>2</sub> solutions, respectively. The more distorted DNA molecule is actually destabilized in pure MgCl<sub>2</sub> compared to pure NaCl. Notably, the first shell, interfacial waters have very low translational and rotational entropy (i.e., mobility) compared to the bulk, an entropic loss that is overcompensated by increased enthalpy from additional electrostatic interactions with Mg<sup>2+</sup>. In contrast, the second hydration shell has anomalously high entropy as it is trapped between an immobile and bulklike layer. The nonmonotonic entropic signature and long-range perturbations of the hydration shells to Mg<sup>2+</sup> may have implications in the molecular recognition of these motifs. For example, we find that low salt stabilizes the parallel configuration of the three-way junction, whereas at normal salt we find antiparallel configurations deduced from the NMR. We use the 2PT analysis to follow the thermodynamics of this transition and find that the free energy barrier is dominated by entropic effects that result from the decreased surface area of the antiparallel form which has a smaller number of low entropy waters in the first monolayer

    Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane

    No full text
    One of the major challenges of nanomedicine and gene therapy is the effective translocation of drugs and genes across cell membranes. In this study, we describe a systematic procedure that could be useful for efficient drug and gene delivery into the cell. Using fully atomistic molecular dynamics (MD) simulations, we show that molecules of various shapes, sizes, and chemistries can be spontaneously encapsulated in a single-walled carbon nanotube (SWCNT) embedded in a 1-palmitoyl-2-oleoyl-<i>sn</i>-glycero-3-phosphocholine (POPC) lipid bilayer, as we have exemplified with dendrimers, asiRNA, ssDNA, and ubiquitin protein. We compute the free energy gain by the molecules upon their entry inside the SWCNT channel to quantify the stability of these molecules inside the channel as well as to understand the spontaneity of the process. The free energy profiles suggest that all molecules can enter the channel without facing any energy barrier but experience a strong energy barrier (≫<i>k</i><sub>B</sub><i>T</i>) to translocate across the channel. We propose a theoretical model for the estimation of encapsulation and translocation times of the molecules. Whereas the model predicts the encapsulation time to be of the order of few nanoseconds, which match reasonably well with those obtained from the simulations, it predicts the translocation time to be astronomically large for each molecule considered in this study. This eliminates the possibility of passive diffusion of the molecules through the CNT–nanopore spanning across the membrane. To counter this, we put forward a mechanical method of ejecting the encapsulated molecules by pushing them with other free-floating SWCNTs of diameter smaller than the pore diameter. The feasibility of the proposed method is also demonstrated by performing MD simulations. The generic strategy described here should work for other molecules as well and hence could be potentially useful for drug- and gene-delivery applications

    Differential dynamics of the serotonin<sub>1A</sub> receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation

    No full text
    <p>The serotonin<sub>1A</sub> receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin<sub>1A</sub> receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3 μs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin<sub>1A</sub> receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin<sub>1A</sub> receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.</p

    Efficient Dendrimer–DNA Complexation and Gene Delivery Vector Properties of Nitrogen-Core Poly(propyl ether imine) Dendrimer in Mammalian Cells

    No full text
    Dendrimers as vectors for gene delivery were established, primarily by utilizing few prominent dendrimer types so far. We report herein studies of DNA complexation efficacies and gene delivery vector properties of a nitrogen-core poly­(propyl ether imine) (PETIM) dendrimer, constituted with 22 tertiary amine internal branches and 24 primary amines at the periphery. The interaction of the dendrimer with pEGFPDNA was evaluated through UV–vis, circular dichroism (CD) spectral studies, ethidium bromide fluorescence emission quenching, thermal melting, and gel retardation assays, from which most changes to DNA structure during complexation was found to occur at a weight ratio of dendrimer:DNA ∼ 2:1. The zeta potential measurements further confirmed this stoichiometry at electroneutrality. The structure of a DNA oligomer upon dendrimer complexation was simulated through molecular modeling and the simulation showed that the dendrimer enfolded DNA oligomer along both major and minor grooves, without causing DNA deformation, in 1:1 and 2:1 dendrimer-to-DNA complexes. Atomic force microscopy (AFM) studies on dendrimer-pEGFP DNA complex showed an increase in the average <i>z</i>-height as a result of dendrimers decorating the DNA, without causing a distortion of the DNA structure. Cytotoxicity studies involving five different mammalian cell lines, using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) assay, reveal the dendrimer toxicity profile (IC<sub>50</sub>) values of ∼400–1000 μg mL<sup>–1</sup>, depending on the cell line tested. Quantitative estimation, using luciferase assay, showed that the gene transfection was at least 100 times higher when compared to poly­(ethylene imine) branched polymer, having similar number of cationic sites as the dendrimer. The present study establishes the physicochemical behavior of new nitrogen-core PETIM dendrimer–DNA complexes, their lower toxicities, and efficient gene delivery vector properties
    corecore