3 research outputs found

    Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti.

    Get PDF
    Measuring antimalarial antibodies can estimate transmission in a population. To compare outputs, standardized laboratory testing is required. Here we describe the in-country establishment and quality control (QC) of a multiplex bead assay (MBA) for three sero-surveys in Haiti. Total IgG data against 21 antigens were collected for 32,758 participants. Titration curves of hyperimmune sera were included on assay plates, assay signals underwent 5-parameter regression, and inspection of the median and interquartile range (IQR) for the y-inflection point was used to determine assay precision. The medians and IQRs were similar for Surveys 1 and 2 for most antigens, while the IQRs increased for some antigens in Survey 3. Levey-Jennings charts for selected antigens provided a pass/fail criterion for each assay plate and, of 387 assay plates, 13 (3.4%) were repeated. Individual samples failed if IgG binding to the generic glutathione-S-transferase protein was observed, with 659 (2.0%) samples failing. An additional 455 (1.4%) observations failed due to low bead numbers (<20/analyte). The final dataset included 609,438 anti-malaria IgG data points from 32,099 participants; 96.6% of all potential data points if no QC failures had occurred. The MBA can be deployed with high-throughput data collection and low inter-plate variability while ensuring data quality

    Selection of Antibody Responses Associated With Plasmodium falciparum Infections in the Context of Malaria Elimination.

    Get PDF
    In our aim to eliminate malaria, more sensitive tools to detect residual transmission are quickly becoming essential. Antimalarial antibody responses persist in the blood after a malaria infection and provide a wider window to detect exposure to infection compared to parasite detection metrics. Here, we aimed to select antibody responses associated with recent and cumulative exposure to malaria using cross-sectional survey data from Haiti, an elimination setting. Using a multiplex bead assay, we generated data for antibody responses (immunoglobulin G) to 23 Plasmodium falciparum targets in 29,481 participants across three surveys. This included one community-based survey in which participants were enrolled during household visits and two sentinel group surveys in which participants were enrolled at schools and health facilities. First, we correlated continuous antibody responses with age (Spearman) to determine which showed strong age-related associations indicating accumulation over time with limited loss. AMA-1 and MSP-119 antibody levels showed the strongest correlation with age (0.47 and 0.43, p < 0.001) in the community-based survey, which was most representative of the underlying age structure of the population, thus seropositivity to either of these antibodies was considered representative of cumulative exposure to malaria. Next, in the absence of a gold standard for recent exposure, we included antibody responses to the remaining targets to predict highly sensitive rapid diagnostic test (hsRDT) status using receiver operating characteristic curves. For this, only data from the survey with the highest hsRDT prevalence was used (7.2%; 348/4,849). The performance of the top two antigens in the training dataset (two-thirds of the dataset; n = 3,204)-Etramp 5 ag 1 and GLURP-R0 (area-under-the-curve, AUC, 0.892 and 0.825, respectively)-was confirmed in the test dataset (remaining one-third of the dataset; n = 1,652, AUC 0.903 and 0.848, respectively). As no further improvement was seen by combining seropositivity to GLURP-R0 and Etramp 5 ag 1 (p = 0.266), seropositivity to Etramp 5 ag 1 alone was selected as representative of current or recent exposure to malaria. The validation of antibody responses associated with these exposure histories simplifies analyses and interpretation of antibody data and facilitates the application of results to evaluate programs

    Rapid Screening for Non-falciparum Malaria in Elimination Settings Using Multiplex Antigen and Antibody Detection: Post Hoc Identification of Plasmodium malariae in an Infant in Haiti.

    Get PDF
    Haiti is targeting malaria elimination by 2025. The Grand'Anse department in southwestern Haiti experiences one-third to half of all nationally reported Plasmodium falciparum cases. Although there are historical reports of Plasmodium vivax and Plasmodium malariae, today, non-falciparum infections would remain undetected because of extensive use of falciparum-specific histidine-rich protein 2 (HRP2) rapid diagnostic tests (RDT) at health facilities. A recent case-control study was conducted in Grand'Anse to identify risk factors for P. falciparum infection using HRP2-based RDTs (n = 1,107). Post hoc multiplex Plasmodium antigenemia and antibody (IgG) detection by multiplex bead assay revealed one blood sample positive for pan-Plasmodium aldolase, negative for P. falciparum HRP2, and positive for IgG antibodies to P. malariae. Based on this finding, we selected 52 samples with possible P. malariae infection using IgG and antigenemia data and confirmed infection status by species-specific PCR. We confirmed one P. malariae infection in a 6-month-old infant without travel history. Congenital P. malariae could not be excluded. However, our finding-in combination with historical reports of P. malariae-warrants further investigation into the presence and possible extent of non-falciparum malaria in Haiti. Furthermore, we showed the use of multiplex Plasmodium antigen and IgG detection in selecting samples of interest for subsequent PCR analysis, thereby reducing costs as opposed to testing all available samples by PCR. This is of specific use in low-transmission or eliminating settings where infections are rare
    corecore