398 research outputs found
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
Years of life that could be saved from prevention of hepatocellular carcinoma
BACKGROUND:
Hepatocellular carcinoma (HCC) causes premature death and loss of life expectancy worldwide. Its primary and secondary prevention can result in a significant number of years of life saved.
AIM:
To assess how many years of life are lost after HCC diagnosis.
METHODS:
Data from 5346 patients with first HCC diagnosis were used to estimate lifespan and number of years of life lost after tumour onset, using a semi-parametric extrapolation having as reference an age-, sex- and year-of-onset-matched population derived from national life tables.
RESULTS:
Between 1986 and 2014, HCC lead to an average of 11.5 years-of-life lost for each patient. The youngest age-quartile group (18-61 years) had the highest number of years-of-life lost, representing approximately 41% of the overall benefit obtainable from prevention. Advancements in HCC management have progressively reduced the number of years-of-life lost from 12.6 years in 1986-1999, to 10.7 in 2000-2006 and 7.4 years in 2007-2014. Currently, an HCC diagnosis when a single tumour <2 cm results in 3.7 years-of-life lost while the diagnosis when a single tumour 65 2 cm or 2/3 nodules still within the Milan criteria, results in 5.0 years-of-life lost, representing the loss of only approximately 5.5% and 7.2%, respectively, of the entire lifespan from birth.
CONCLUSIONS:
Hepatocellular carcinoma occurrence results in the loss of a considerable number of years-of-life, especially for younger patients. In recent years, the increased possibility of effectively treating this tumour has improved life expectancy, thus reducing years-of-life lost
Compartmentalization of Calcium Extrusion Mechanisms in the Outer and Inner Segments of Photoreceptors
AbstractDifferential localization of calcium channel subtypes in divergent regions of individual neurons strongly suggests that calcium signaling and regulation could be compartmentalized. Region-specific expression of calcium extrusion transporters would serve also to partition calcium regulation within single cells. Little is known about selective localization of the calcium extrusion transporters, nor has compartmentalized calcium regulation within single neurons been studied in detail. Sensory neurons provide an experimentally tractable preparation to investigate this functional compartmentalization. We studied calcium regulation in the outer segment (OS) and inner segment/synaptic terminal (IS/ST) regions of rods and cones. We report these areas can function as separate compartments. Moreover, ionic, pharmacological, and immunolocalization results show that a Ca-ATPase, but not the Na+/K+, Ca2+ exchanger found in the OSs, extrudes calcium from the IS/ST region. The compartmentalization of calcium regulation in the photoreceptor outer and inner segments implies that transduction and synaptic signaling can be independently controlled. Similar separation of calcium-dependent functions is likely to apply in many types of neuron
Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field
Evaluation of Load Distribution in a Mandibular Model with Four Implants Depending on the Number of Prosthetic Screws Used for OT-Bridge System: A Finite Element Analysis (FEA)
In full-arch implant rehabilitations, when the anterior screw abutment channel compromises the aesthetic of the patient, the OT-Bridge system used with its Seeger rings may provide the necessary retention of the prosthesis. However, no studies have evaluated the forces generated at the Seeger level during loading. This Finite Element Analysis aims to investigate the mechanical behavior of Seeger rings in a mandibular model with four implants and an OT-Bridge system, used without one or two anterior prosthetic screws. A 400 N unilateral load was virtually applied on a 7 mm distal cantilever. Two different variables were considered: the constraint conditions using two or three screws instead of four and the three different framework materials (fiberglass reinforced resin, cobalt-chrome, TiAl6V4). The FEA analysis exhibited tensile and compressive forces on the Seeger closest to the loading point. With the resin framework, a tension force on abutment 3.3 generates a displacement from 5 to 10 times greater than that respectively expressed in metal framework materials. In a full-arch rehabilitation with four implants, the case with three prosthetic screws seems to be a safer and more predictable configuration instead of two. Considering the stress value exhibited and the mechanical properties of the Seeger, the presence of only two prosthetic screws could lead to permanent deformation of the Seeger in the screwless abutment closest to the loading point
Editorial: Evolution in respiratory pharmacology
This collection of Research Topics entitled “Evolution in respiratory pharmacology,” involving authors from several countries, confirms that “Respiratory Pharmacology” is a current topic in clinical and research settings.
All articles focused on contributions that explore the changing context and emerging new perspectives within Respiratory Pharmacology (Kim et al., Cerqua et al., Li et al., Lin et al., Zhang et al.). The emphasis of this Research Topic is on the dynamics of change and the evolution of the latest progress made in the field of Respiratory Pharmacology. This collection of articles aims to inform, inspire, and provide direction and guidance to researchers in the field
Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.
Microvascular Alteration in COVID-19 Documented by Nailfold Capillaroscopy
COVID-19 is a multisystemic disease that mainly affects and causes dysregulation of the endothelium, causing systemic manifestations. A nailfold video capillaroscopy is a safe, easy, and noninvasive method to evaluate microcirculation alteration. In this review, we analyzed the literature available to date regarding the object of nailfold video capillaroscopy (NVC) use in patients with a SARS-CoV-2 infection, both in the acute phase and after discharge. The scientific evidence pointed out the main alterations in capillary circulation shown by NVC, so reviewing the findings of each article allowed us to define and analyze the future prospects and needs for possibly including NVC within the management of patients with COVID-19, both during and after the acute phase
Host-Based Treatments for Severe COVID-19
COVID-19 has been a global health problem since 2020. There are different spectrums of manifestation of this disease, ranging from asymptomatic to extremely severe forms requiring admission to intensive care units and life-support therapies, mainly due to severe pneumonia. The progressive understanding of this disease has allowed researchers and clinicians to implement different therapeutic alternatives, depending on both the severity of clinical involvement and the causative molecular mechanism that has been progressively explored. In this review, we analysed the main therapeutic options available to date based on modulating the host inflammatory response to SARS-CoV-2 infection in patients with severe and critical illness. Although current guidelines are moving toward a personalised treatment approach titrated on the timing of presentation, disease severity, and laboratory parameters, future research is needed to identify additional biomarkers that can anticipate the disease course and guide targeted interventions on an individual basis
- …
