8 research outputs found
Experimental investigation of a high efficiency electric heater and dehumidifier prototype unit
In this paper the principle of operation and preliminary laboratory measurements of a prototype of a high-efficiency electrical air heater unit is presented. Unlike conventional heaters, which apply Joule-heat formed by electrical resistance, the developed device uses thermoelectric modules for heating ambient air. Just like in case of resistance heaters, most of the heat is produced as a result of the internal ohmic resistance of the thermoelectric module (resistance heating), however, in case of appropriate air conditions our device is capable of transforming the latent heat of the air moisture into heat energy. In case of condensation mode, some of the moisture condensates on the cold side of the module while its latent heat is transferred to the hot side of the module where it heats the dried air. In this mode, the heating efficiency of the device (e.g., the ratio of the heat added to air and the consumed electricity) is over unity. Following the idea and basic equations of the operation of this device, the results of the laboratory measurements in a climate test chamber is presented
Experimental investigation of a high efficiency electric heater and dehumidifier prototype unit
In this paper the principle of operation and preliminary laboratory measurements of a prototype of a high-efficiency electrical air heater unit is presented. Unlike conventional heaters, which apply Joule-heat formed by electrical resistance, the developed device uses thermoelectric modules for heating ambient air. Just like in case of resistance heaters, most of the heat is produced as a result of the internal ohmic resistance of the thermoelectric module (resistance heating), however, in case of appropriate air conditions our device is capable of transforming the latent heat of the air moisture into heat energy. In case of condensation mode, some of the moisture condensates on the cold side of the module while its latent heat is transferred to the hot side of the module where it heats the dried air. In this mode, the heating efficiency of the device (e.g., the ratio of the heat added to air and the consumed electricity) is over unity. Following the idea and basic equations of the operation of this device, the results of the laboratory measurements in a climate test chamber is presented
HĆszivattyĂșs fƱtĆ Ă©s pĂĄramentesĂtĆ kĂ©szĂŒlĂ©k tervezĂ©se
SzĂĄmos lakĂłingatlanban, azokon belĂŒl is fĆkĂ©nt a fĂŒrdĆszobĂĄkban alkalmaznak â akĂĄr kiegĂ©szĂtĆ jelleggel â elektromos fƱtĆegysĂ©geket. Ezek jellemzĆen igen magas hatĂĄsfokkal ĂŒzemelnek, hiszen a legtöbb esetben az elektromos ĂĄramot Joule-hĆvĂ© alakĂtjĂĄk ĂĄt villamos ellenĂĄllĂĄs segĂtsĂ©gĂ©vel. Mivel a fĂŒrdĆszoba levegĆjĂ©nek pĂĄratartalma jellemzĆen magas Ă©rtĂ©keket is elĂ©rhet annak hasznĂĄlata közben, ezĂ©rt cĂ©lszerƱ lenne egy olyan fƱtĆkĂ©szĂŒlĂ©ket alkalmazni, amely nem csupĂĄn a levegĆ hĆmĂ©rsĂ©kletĂ©t növeli, hanem egyĂșttal annak abszolĂșt pĂĄratartalmĂĄt is csökkenti. Amennyiben egy hĆszivattyĂșt alkalmazunk fƱtĂ©si cĂ©lra Ășgy, hogy annak mind a hĆfelvevĆ, mind pedig a hĆleadĂł egysĂ©ge ugyanazon lĂ©gtĂ©rben talĂĄlhatĂł, Ășgy a hĆelvonĂĄs helyszĂnĂ©n kialakulĂł â az adott lĂ©gĂĄllapothoz tartozĂł â harmatpont alatti hĆmĂ©rsĂ©kletƱ felĂŒleten kondenzĂĄciĂł jön lĂ©tre, tehĂĄt a levegĆ pĂĄratartalmĂĄnak egy rĂ©sze kicsapĂłdik. Ezzel egyrĂ©szt csökkenthetĆ a levegĆ abszolĂșt pĂĄratartalma (amely higiĂ©niĂĄs szempontok miatt is cĂ©lszerƱ), tovĂĄbbĂĄ a kondenzĂĄciĂłkor felszabadulĂł lĂĄtens-hĆ következtĂ©ben pedig akĂĄr jelentĆs hĆtöbblet jelenhet meg a hĆleadĂł oldalon, ezzel 100%-os Ă©rtĂ©k felĂ© növelve a fƱtĂ©si hatĂĄsfokot. Egy ilyen elven ĂŒzemelĆ hĆszivattyĂșs fƱtĆkĂ©szĂŒlĂ©kprototĂpus felĂ©pĂtĂ©sĂ©t Ă©s mƱködĂ©sĂ©t ismertetjĂŒk jelen tanulmĂĄnyban, kitĂ©rve a jellemzĆ klĂmatechnikai paramĂ©terekre, összefĂŒggĂ©sekre, a tervezĂ©shez elvĂ©gzett szĂĄmĂtĂĄsokra. Abstract: Many residential building use electrical heaters mainly in bathrooms, even as a supplement heating device. These devices typically operate at very high efficiency, since in most cases, electrical current is converted into Joule-heat by means of electrical resistances. The humidity of the air in bathrooms is often very high. Therefore, it would be useful to apply such heating devices, which not only increase the temperature of the air, but also reduces the absolute humidity of it. If a heat pump is used for heating purposes where both the heat absorber and the heat exchanger are placed in the same airspace, condensation occurs at a temperature below the dew point of the given air condition at the point of heat extraction thus some of the humidity precipitates. Along with this the absolute humidity of the air can be reduced (which is also recommended for hygiene reasons). Furthermore, due to the latent heat released during the condensation a significant excess of heat appears on the heat exchanger, increasing the heating efficiency over 100%. The design and operation of a heat pump heater operating on such a principle is described in this study, addressing the typical air-conditioning parameters, correlations, calculations performed for the design
HĆszivattyĂșs fƱtĆ Ă©s pĂĄramentesĂtĆ kĂ©szĂŒlĂ©k tervezĂ©se
Many residential building use electrical heaters mainly in bathrooms, even as a supplement heating device. These devices typically operate at very high efficiency, since in most cases, electrical current is converted into Joule-heat by means of electrical resistances. The humidity of the air in bathrooms is often very high. Therefore, it would be useful to apply such heating devices, which not only increase the temperature of the air, but also reduces the absolute humidity of it. If a heat pump is used for heating purposes where both the heat absorber and the heat exchanger are placed in the same airspace, condensation occurs at a temperature below the dew point of the given air condition at the point of heat extraction thus some of the humidity precipitates. Along with this the absolute humidity of the air can be reduced (which is also recommended for hygiene reasons). Furthermore, due to the latent heat released during the condensation a significant excess of heat appears on the heat exchanger, increasing the heating efficiency over 100%. The design and operation of a heat pump heater operating on such a principle is described in this study, addressing the typical air-conditioning parameters, correlations, calculations performed for the design.SzĂĄmos lakĂłingatlanban, azokon belĂŒl is fĆkĂ©nt a fĂŒrdĆszobĂĄkban alkalmaznak â akĂĄr kiegĂ©szĂtĆ jelleggel â elektromos fƱtĆegysĂ©geket. Ezek jellemzĆen igen magas hatĂĄsfokkal ĂŒzemelnek, hiszen a legtöbb esetben az elektromos ĂĄramot Joule-hĆvĂ© alakĂtjĂĄk ĂĄt villamos ellenĂĄllĂĄs segĂtsĂ©gĂ©vel. Mivel a fĂŒrdĆszoba levegĆjĂ©nek pĂĄratartalma jellemzĆen magas Ă©rtĂ©keket is elĂ©rhet annak hasznĂĄlata közben, ezĂ©rt cĂ©lszerƱ lenne egy olyan fƱtĆkĂ©szĂŒlĂ©ket alkalmazni, amely nem csupĂĄn a levegĆ hĆmĂ©rsĂ©kletĂ©t növeli, hanem egyĂșttal annak abszolĂșt pĂĄratartalmĂĄt is csökkenti. Amennyiben egy hĆszivattyĂșt alkalmazunk fƱtĂ©si cĂ©lra Ășgy, hogy annak mind a hĆfelvevĆ, mind pedig a hĆleadĂł egysĂ©ge ugyanazon lĂ©gtĂ©rben talĂĄlhatĂł, Ășgy a hĆelvonĂĄs helyszĂnĂ©n kialakulĂł â az adott lĂ©gĂĄllapothoz tartozĂł â harmatpont alatti hĆmĂ©rsĂ©kletƱ felĂŒleten kondenzĂĄciĂł jön lĂ©tre, tehĂĄt a levegĆ pĂĄratartalmĂĄnak egy rĂ©sze kicsapĂłdik. Ezzel egyrĂ©szt csökkenthetĆ a levegĆ abszolĂșt pĂĄratartalma (amely higiĂ©niĂĄs szempontok miatt is cĂ©lszerƱ), tovĂĄbbĂĄ a kondenzĂĄciĂłkor felszabadulĂł lĂĄtens-hĆ következtĂ©ben pedig akĂĄr jelentĆs hĆtöbblet jelenhet meg a hĆleadĂł oldalon, ezzel 100%-os Ă©rtĂ©k felĂ© növelve a fƱtĂ©si hatĂĄsfokot. Egy ilyen elven ĂŒzemelĆ hĆszivattyĂșs fƱtĆkĂ©szĂŒlĂ©kprototĂpus felĂ©pĂtĂ©sĂ©t Ă©s mƱködĂ©sĂ©t ismertetjĂŒk jelen tanulmĂĄnyban, kitĂ©rve a jellemzĆ klĂmatechnikai paramĂ©terekre, összefĂŒggĂ©sekre, a tervezĂ©shez elvĂ©gzett szĂĄmĂtĂĄsokra
HƱtĆgĂ©pek hĆtechnikai analĂzise
HĂĄztartĂĄsi hƱtĆberendezĂ©sek hozzĂĄtartoznak mindennapjainkhoz. Mivel folyamatosan mƱködĆ berendezĂ©sekrĆl van szĂł, kiemelten fontos, hogy a felhasznĂĄlt villamos energiĂĄt milyen hatĂĄsfokkal hasznosĂtjĂĄk. A felhasznĂĄlt energia mennyisĂ©gĂ©t több tĂ©nyezĆ egyĂŒttesen hatĂĄrozza meg. Ilyen pĂ©ldĂĄul a hƱtĆaggregĂĄt hatĂĄsfoka, a hĆszigetelĂ©s hatĂĄsossĂĄga, a hƱtĆtĂ©rben kialakulĂł hĆmĂ©rsĂ©klettĂ©r egyenletessĂ©ge stb. A hƱtĆberendezĂ©sek igen nagy szĂĄmban kĂ©szĂŒlnek, s erĆs a konkurenciaharc. EzĂ©rt a gyĂĄrtĂłk oldalĂĄrĂłl felmerĂŒl az igĂ©ny, hogy a lehetĆ legjobb hatĂĄsfokon tĂșl az anyagfelhasznĂĄlĂĄs minĂ©l kevesebb, a gyĂĄrtĂĄsi technolĂłgia pedig a lehetĆ legegyszerƱbb legyen. TehĂĄt az a cĂ©l, hogy a lehetĆ legolcsĂłbban a lehetĆ legjobb hatĂĄsfokĂș kĂ©szĂŒlĂ©kek kĂ©szĂŒljenek. EzĂ©rt a berendezĂ©sek minden elemĂ©t kĂsĂ©rleti Ă©s elmĂ©leti analĂzisnek kell alĂĄvetni. Jelen cikkben kĂ©t hƱtĆberendezĂ©s vizsgĂĄlatĂĄrĂłl szĂĄmolunk be: az egyik egy fagyasztĂłlĂĄda, a mĂĄsik viszont egy hƱtĆszekrĂ©ny. MindkĂ©t berendezĂ©s esetĂ©n a hƱtĆ belsejĂ©ben Ă©s a gĂ©p többrĂ©tegƱ falĂĄban kialakulĂł hĆjelensĂ©geket vizsgĂĄljuk. A vizsgĂĄlatok sorĂĄn egy egyedileg fejlesztett mĂ©rĆrendszert hasznĂĄlunk. A mĂ©rĂ©si eredmĂ©nyeket összevetjĂŒk numerikus szimulĂĄciĂł elĆzetes eredmĂ©nyeivel. A vizsgĂĄlatnak nem tĂĄrgya a hƱtĆaggregĂĄtok modellezĂ©se. Abstract: Household refrigerators are part of our everyday life. As it is a system of continuous operation, the electrical efficiency is a major thing. The amount of energy used is determined by several factors together. Such as the efficiency of the cooling unit, the efficiency of the thermal insulation, the uniformity of the temperature in the refrigerator compartment, etc. The refrigerators are made in a very large number and the competition among the manufacturers is strong. For this reason, there is a need on the manufacturers' side to use as less material as possible and to make production technology as simple as possible. So, the target is to make the best possible devices at the lowest possible cost. Therefore, all elements of the equipment should be subjected to experimental and theoretical analysis. In this article, we will review two chillers: one is a freezer and the other is a refrigerator. For both devices, the thermal phenomena in the interior of the refrigerator and in the multi-layer wall of the machine are examined. We use an individually developed measuring system. The measurement results are compared with preliminary results of numerical simulation. The modelling of the cooling units is not part of the article
HƱtĆgĂ©pek hĆtechnikai analĂzise
Household refrigerators are part of our everyday life. As it is a system of continuous operation, the electrical efficiency is a major thing. The amount of energy used is determined by several factors together. Such as the efficiency of the cooling unit, the efficiency of the thermal insulation, the uniformity of the temperature in the refrigerator compartment, etc. The refrigerators are made in a very large number and the competition among the manufacturers is strong. For this reason, there is a need on the manufacturers' side to use as less material as possible and to make production technology as simple as possible. So, the target is to make the best possible devices at the lowest possible cost. Therefore, all elements of the equipment should be subjected to experimental and theoretical analysis. In this article, we will review two chillers: one is a freezer and the other is a refrigerator. For both devices, the thermal phenomena in the interior of the refrigerator and in the multi-layer wall of the machine are examined. We use an individually developed measuring system.The measurement results are compared with preliminary results of numerical simulation. The modelling of the cooling units is not part of the article.HĂĄztartĂĄsi hƱtĆberendezĂ©sek hozzĂĄtartoznak mindennapjainkhoz. Mivel folyamatosan mƱködĆ berendezĂ©sekrĆl van szĂł, kiemelten fontos, hogy a felhasznĂĄlt villamos energiĂĄt milyen hatĂĄsfokkal hasznosĂtjĂĄk. A felhasznĂĄlt energia mennyisĂ©gĂ©t több tĂ©nyezĆ egyĂŒttesen hatĂĄrozza meg. Ilyen pĂ©ldĂĄul a hƱtĆaggregĂĄt hatĂĄsfoka, a hĆszigetelĂ©s hatĂĄsossĂĄga, a hƱtĆtĂ©rben kialakulĂł hĆmĂ©rsĂ©klettĂ©r egyenletessĂ©ge stb. A hƱtĆberendezĂ©sek igen nagy szĂĄmban kĂ©szĂŒlnek, s erĆs a konkurenciaharc. EzĂ©rt a gyĂĄrtĂłk oldalĂĄrĂłl felmerĂŒl az igĂ©ny, hogy a lehetĆ legjobb hatĂĄsfokon tĂșl az anyagfelhasznĂĄlĂĄs minĂ©l kevesebb, a gyĂĄrtĂĄsi technolĂłgia pedig a lehetĆ legegyszerƱbb legyen. TehĂĄt az a cĂ©l, hogy a lehetĆ legolcsĂłbban a lehetĆ legjobb hatĂĄsfokĂș kĂ©szĂŒlĂ©kek kĂ©szĂŒljenek. EzĂ©rt a berendezĂ©sek minden elemĂ©t kĂsĂ©rleti Ă©s elmĂ©leti analĂzisnek kell alĂĄvetni. Jelen cikkben kĂ©t hƱtĆberendezĂ©s vizsgĂĄlatĂĄrĂłl szĂĄmolunk be: az egyik egy fagyasztĂłlĂĄda, a mĂĄsik viszont egy hƱtĆszekrĂ©ny. MindkĂ©t berendezĂ©s esetĂ©n a hƱtĆ belsejĂ©ben Ă©s a gĂ©p többrĂ©tegƱ falĂĄban kialakulĂł hĆjelensĂ©geket vizsgĂĄljuk. A vizsgĂĄlatok sorĂĄn egy egyedileg fejlesztett mĂ©rĆrendszert hasznĂĄlunk. A mĂ©rĂ©si eredmĂ©nyeket összevetjĂŒk numerikus szimulĂĄciĂł elĆzetes eredmĂ©nyeivel. A vizsgĂĄlatnak nem tĂĄrgya a hƱtĆaggregĂĄtok modellezĂ©se
Stirling motor modellezése
A cikkben a Stirling gĂ©pekben lejĂĄtszĂłdĂł termodinamikai folyamatok szĂĄmĂtĂĄsĂĄra alkalmas numerikus eljĂĄrĂĄst ismertetĂŒnk. A munkaközeg ĂĄramlĂĄsĂĄt egydimenziĂłs, instacionĂĄrius, nem izentrĂłpikus gĂĄzĂĄramlĂĄskĂ©nt modellezzĂŒk. A Stirling gĂ©pben lejĂĄtszĂłdĂł körfolyamatot a mozgĂĄs-, a kontinuitĂĄsi- Ă©s az energiaegyenletbĆl ĂĄllĂł parciĂĄlis differenciĂĄl-egyenlet rendszerrel Ărjuk le, amelyet a karakterisztikĂĄk mĂłdszerĂ©vel oldunk meg. RĂ©szletesen ismertetjĂŒk a megoldĂĄshoz szĂŒksĂ©ges kezdeti- Ă©s peremfeltĂ©telek elĆĂĄllĂtĂĄsĂĄt Ă©s az egyes tĂ©rrĂ©szek összekapcsolĂĄsĂĄt leĂrĂł egyenletrendszert. A mĂłdszer alkalmazhatĂłsĂĄgĂĄnak igazolĂĄsĂĄra egy konkrĂ©t szĂĄmĂtĂĄsi pĂ©ldĂĄt is megoldunk
Stirling motor modellezése
This article describes a numerical method for calculating thermodynamic processes in Stirling machines. The flow of the fluid is modeled as a one-dimensional, stationary, non-isotropic gas flow. The process in the Stirling machine is described by a partial differential equation system consisting of motion, continuity, and energy equation, which is solved by the characteristic method. The preparation of the initial and boundary conditions for the solution is described in detail and system of equations describing the interconnection of each space. A specific calculation example is also provided to prove the applicability of the method.A cikkben a Stirling gĂ©pekben lejĂĄtszĂłdĂł termodinamikai folyamatok szĂĄmĂtĂĄsĂĄra alkalmas numerikus eljĂĄrĂĄst ismertetĂŒnk. A munkaközeg ĂĄramlĂĄsĂĄt egydimenziĂłs, instacionĂĄrius, nem izentrĂłpikus gĂĄzĂĄramlĂĄskĂ©nt modellezzĂŒk. A Stirling gĂ©pben lejĂĄtszĂłdĂł körfolyamatot a mozgĂĄs-, a kontinuitĂĄsi- Ă©s az energiaegyenletbĆl ĂĄllĂł parciĂĄlis differenciĂĄl-egyenlet rendszerrel Ărjuk le, amelyet a karakterisztikĂĄk mĂłdszerĂ©vel oldunk meg. RĂ©szletesen ismertetjĂŒk a megoldĂĄshoz szĂŒksĂ©ges kezdeti- Ă©s peremfeltĂ©telek elĆĂĄllĂtĂĄsĂĄt Ă©s az egyes tĂ©rrĂ©szek összekapcsolĂĄsĂĄt leĂrĂł egyenletrendszert. A mĂłdszer alkalmazhatĂłsĂĄgĂĄnak igazolĂĄsĂĄra egy konkrĂ©t szĂĄmĂtĂĄsi pĂ©ldĂĄt is megoldunk