6,691 research outputs found

    Product Origin and Reputation for Quality: the Case of Organic Foods

    Get PDF
    Replaced with revised version of paper 12/30/09.Agribusiness, Demand and Price Analysis, Industrial Organization,

    Developing numerical libraries in Java

    Full text link
    The rapid and widespread adoption of Java has created a demand for reliable and reusable mathematical software components to support the growing number of compute-intensive applications now under development, particularly in science and engineering. In this paper we address practical issues of the Java language and environment which have an effect on numerical library design and development. Benchmarks which illustrate the current levels of performance of key numerical kernels on a variety of Java platforms are presented. Finally, a strategy for the development of a fundamental numerical toolkit for Java is proposed and its current status is described.Comment: 11 pages. Revised version of paper presented to the 1998 ACM Conference on Java for High Performance Network Computing. To appear in Concurrency: Practice and Experienc

    Double Diffusion Encoding Prevents Degeneracy in Parameter Estimation of Biophysical Models in Diffusion MRI

    Get PDF
    Purpose: Biophysical tissue models are increasingly used in the interpretation of diffusion MRI (dMRI) data, with the potential to provide specific biomarkers of brain microstructural changes. However, the general Standard Model has recently shown that model parameter estimation from dMRI data is ill-posed unless very strong magnetic gradients are used. We analyse this issue for the Neurite Orientation Dispersion and Density Imaging with Diffusivity Assessment (NODDIDA) model and demonstrate that its extension from Single Diffusion Encoding (SDE) to Double Diffusion Encoding (DDE) solves the ill-posedness and increases the accuracy of the parameter estimation. Methods: We analyse theoretically the cumulant expansion up to fourth order in b of SDE and DDE signals. Additionally, we perform in silico experiments to compare SDE and DDE capabilities under similar noise conditions. Results: We prove analytically that DDE provides invariant information non-accessible from SDE, which makes the NODDIDA parameter estimation injective. The in silico experiments show that DDE reduces the bias and mean square error of the estimation along the whole feasible region of 5D model parameter space. Conclusions: DDE adds additional information for estimating the model parameters, unexplored by SDE, which is enough to solve the degeneracy in the NODDIDA model parameter estimation.Comment: 22 pages, 7 figure

    Circumstellar Disks revealed by HH/KK Flux Variation Gradients

    Full text link
    The variability of young stellar objects (YSO) changes their brightness and color preventing a proper classification in traditional color-color and color magnitude diagrams. We have explored the feasibility of the flux variation gradient (FVG) method for YSOs, using HH and KK band monitoring data of the star forming region RCW\,38 obtained at the University Observatory Bochum in Chile. Simultaneous multi-epoch flux measurements follow a linear relation FH=α+ÎČ⋅FKF_{H}=\alpha + \beta \cdot F_{K} for almost all YSOs with large variability amplitude. The slope ÎČ\beta gives the mean HKHK color temperature TvarT_{var} of the varying component. Because TvarT_{var} is hotter than the dust sublimation temperature, we have tentatively assigned it to stellar variations. If the gradient does not meet the origin of the flux-flux diagram, an additional non- or less-varying component may be required. If the variability amplitude is larger at the shorter wavelength, e.g. α<0\alpha < 0, this component is cooler than the star (e.g. a circumstellar disk); vice versa, if α>0\alpha > 0, the component is hotter like a scattering halo or even a companion star. We here present examples of two YSOs, where the HKHK FVG implies the presence of a circumstellar disk; this finding is consistent with additional data at JJ and LL. One YSO shows a clear KK-band excess in the JHKJHK color-color diagram, while the significance of a KK-excess in the other YSO depends on the measurement epoch. Disentangling the contributions of star and disk it turns out that the two YSOs have huge variability amplitudes (∌3−5\sim 3-5\,mag). The HKHK FVG analysis is a powerful complementary tool to analyze the varying components of YSOs and worth further exploration of monitoring data at other wavelengths.Comment: 5 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Modeling the hydraulic performance of the aeration system in dam bottom outlets using the particle finite element method

    Get PDF
    Los desagĂŒes de fondo juegan un papel fundamental en la seguridad de las presas, ya que permiten controlar el caudal liberado en cada momento, y por tanto el nivel de embalse por debajo del nivel mĂĄximo normal. Desde principios del siglo xx se ha observado que para el correcto funcionamiento del desagĂŒe y para evitar daños durante su operaciĂłn, es conveniente disponer un sistema de aducciĂłn de aire aguas abajo de las compuertas, donde pueden aparecer presiones negativas. De otro modo, es frecuente que se produzcan daños por cavitaciĂłn y vibraciones. Debido a la dificultad para tomar datos o hacer estudios del fenĂłmeno in situ y a escala real, el diseño de los sistemas de aireaciĂłn se ha realizado tradicionalmente a partir de ensayos en laboratorio con modelos fĂ­sicos a escala reducida, con cuyos resultados se han obtenido diferentes fĂłrmulas empĂ­ricas que estiman el caudal de aire necesario para diseñar el sistema de aducciĂłn. En el presente trabajo el problema se estudia mediante modelaciĂłn numĂ©rica, incluyendo la interacciĂłn agua-aire. Para ello se utiliza el mĂ©todo de partĂ­culas y elementos finitos (PFEM), que habĂ­a sido previamente aplicado y validado para el anĂĄlisis del comportamiento de otras estructuras hidrĂĄulicas. De este modo se pretenden evitar los efectos de escala inherentes a los ensayos en modelo fĂ­sico y analizar con mĂĄs detalle los parĂĄmetros fundamentales. Los resultados permiten obtener conclusiones acerca de la influencia de las variables que intervienen.Dam bottom are key elements to control the water surface elevation below the spillway crest level. As a consequence, they are essential in reservoir management, and play a vital role in dam safety. The convenience of installing an aeration system in dam bottom outlets is well known nowadays. Otherwise, damages due to cavitation and vibration are frequently serious, as could be observed in several dams built in the beginning of the 20th century. The intrinsic features of the phenomenon make it hard to analyze either in situ or in full scaled experimental facilities. As a consequence, most of the previous studies have been carried out in small-scale physical models. The results of these works have been used to develop empirical formulas which provide an estimation of the maximum air demand of the aeration system. The progress in the development of numerical methods allows addressing this problem using numerical modeling. The Particle Finite Element Method (PFEM) had been previously applied and validated for the analysis of the performance of other hydraulic structures. In this work, it has been used to simulate air-water interaction in free-flowing gated conduits. The objective is to avoid the scale effects of physical modeling and to study in detail the key parameters. The results clarify the behaviour of the involved fluids (air and water) and provide information about the influence of the main variables that affect their circulation.Peer Reviewe

    Photometric reverberation mapping of 3C120

    Full text link
    We present the results of a five month monitoring campaign of the local active galactic nuclei (AGN) 3C120. Observations with a median sampling of two days were conducted with the robotic 15cm telescope VYSOS-6 located near Cerro Armazones in Chile. Broad band (B,V) and narrow band (NB) filters were used in order to measure fluxes of the AGN and the H_beta broad line region (BLR) emission line. The NB flux is constituted by about 50% continuum and 50% H_beta emission line. To disentangle line and continuum flux, a synthetic H_beta light curve was created by subtracting a scaled V-band light curve from the NB light curve. Here we show that the H_beta emission line responds to continuum variations with a rest frame lag of 23.6 +/- 1.69 days. We estimate a virial mass of the central black hole M_BH = 57 +/- 27 * 10^6 solar masses, by combining the obtained lag with the velocity dispersion of a single contemporaneous spectrum. Using the flux variation gradient (FVG) method, we determined the host galaxy subtracted rest frame 5100A luminosity at the time of our monitoring campaign with an uncertainty of 10% (L_AGN = 6.94 +/- 0.71* 10^43 ergs^-1). Compared with recent spectroscopic reverberation results, 3C120 shifts in the R_BLR - L_AGN diagram remarkably close to the theoretically expected relation of R-L^0.5. Our results demonstrate the performance of photometric AGN reverberation mapping, in particular for efficiently determining the BLR size and the AGN luminosityComment: 11 pages, 11 figures, Published in Astronomy and Astrophysic
    • 

    corecore