5 research outputs found

    Contribution of GABAA receptor subunits to attention and social behavior

    No full text
    Introduction: GABA dysfunction is associated with a number of psychiatric conditions including schizophrenia, autism and depression. Blocking cortical GABAA receptors in rodents causes behavioral deficits, including impaired attention and sociability, that are consistent with the symptoms of these conditions. The subunit composition of GABAA receptors is diverse and can affect receptor function. The current experiment examined the role of GABAA receptors containing different α-subunits in social behavior and attention. Methods: Male Sprague-Dawley rats were administered FG7142 (0.0–5.0 mg/kg; a non-selective GABAA receptor inverse agonist), L-655,708 (0–1.0 mg/kg; a low efficacy inverse agonist at α5-containing GABAA receptors), MRK-016 (0.0–2.0 mg/kg; a high efficacy inverse agonist at α5-containing GABAA receptors), or L-838,417 (0.0–3.0 mg/kg; an antagonist at α1-containing receptors and a partial agonist at α2, α3, α5-containing GABAA receptors) and either tested on the social interaction and social preference tests or the 5-choice serial reaction time task. Results: FG7142 decreased social interactions and impaired attention. MRK-016 impaired attention but did not affect social behavior. Neither L-655,708 nor L-838,417 significantly affected either social behavior or attention. Discussion: Systemic reduction in GABAA receptor signaling decreased sociability and attention, a result consistent with past research demonstrating cortical GABAA receptor blockade impairs social behavior and attention. Overall, the effects of the receptor subtype selective ligands were minimal; α5-containing GABAA receptors may contribute to the attentional deficit but do not contribute to the decrease in sociability. Further research is needed to determine the GABAA receptor subunits that contribute to social behavior and attention

    Juvenile stress increases cocaine-induced impulsivity in female rats

    No full text
    In humans, adverse childhood experiences are associated with an increased risk of developing a neuropsychiatric disorder. Changes in social behavior and cognitive function are hallmarks of numerous neuropsychiatric disorders. Here we examined the effects of exposure to variable stress during the juvenile period on social behavior, reward, and cognitive function (as measured in the 5-choice serial reaction time task (5CSRTT)) in rats. From postnatal days (PND) 25-29 male and female rats were exposed to a variable stress protocol. In adulthood, social interactions and sucrose preference were assessed prior to training on the 5CSRTT. Once successfully trained, rats were challenged with different task versions, and then the effects of cocaine (0, 10, or 20 mg/kg, IP) on performance were assessed. A follow-up experiment examined the ability of the D2 receptor antagonist eticlopride (0.0, 0.025, 0.05 mg/kg, IP) to block the effects of cocaine on 5CSRTT performance in female rats. Male rats exposed to juvenile stress tended to engage in less social behavior and had an increased correct response latency in the 5CSRTT following cocaine administration. Female rats exposed to juvenile stress exhibited a trend towards increased social behavior and demonstrated increased cocaine-induced impulsivity. The increase in impulsivity was not blocked by co-administration of eticlopride. Juvenile stress had minimal effects on adult behavior in male rats, but increased cocaine-induced impulsivity in female rats. Such an effect could contribute to the enhanced escalation of drug-use observed in females that experience juvenile stress. This possibility awaits further testing
    corecore