3,983 research outputs found
Volunteer Tourism as a Transformative Experience: A Mixed Methods Empirical Study
In an effort to combine tourism with pro-social giving and personal development, more and more people choose to go abroad on volunteer tourism trips. We explore the potential transformational influence such trips have on travelers, aiming to map the transformation process stages and examine their boundary conditions. In doing so, we follow a mixed methods approach using a qualitative study comprising ethnographically informed in-depth interviews and a quantitative one, by means of a structured questionnaire. Findings indicate that the transformation process volunteer tourists undergo involves three stages related to liminality. We conceptualize the degree of liminality as immersiveness and show how the transformation process is significantly influenced by the degree of authenticity and the immersiveness of volunteer tourists’ experiences, as well as their own perceptions on how societally meaningful their actions were during their trips. Based on our conclusions, we present important implications for academics, managers and tour operators
Fredholm determinants and the statistics of charge transport
Using operator algebraic methods we show that the moment generating function
of charge transport in a system with infinitely many non-interacting Fermions
is given by a determinant of a certain operator in the one-particle Hilbert
space. The formula is equivalent to a formula of Levitov and Lesovik in the
finite dimensional case and may be viewed as its regularized form in general.
Our result embodies two tenets often realized in mesoscopic physics, namely,
that the transport properties are essentially independent of the length of the
leads and of the depth of the Fermi sea.Comment: 30 pages, 2 figures, reference added, credit amende
The Index of (White) Noises and their Product Systems
(See detailed abstract in the article.) We single out the correct class of
spatial product systems (and the spatial endomorphism semigroups with which the
product systems are associated) that allows the most far reaching analogy in
their classifiaction when compared with Arveson systems. The main differences
are that mere existence of a unit is not it sufficient: The unit must be
CENTRAL. And the tensor product under which the index is additive is not
available for product systems of Hilbert modules. It must be replaced by a new
product that even for Arveson systems need not coincide with the tensor
product
Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management
Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network‐based model that quantifies nitrate‐nitrogen and organic carbon concentrations through a wetland‐river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data‐rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013–2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed‐scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.This research was funded by NSF grant EAR-1209402 under the Water Sustainability and Climate Program (WSC): REACH (REsilience under Accelerated CHange)NSF grant EAR-1242458 under Science Across Virtual Institutes (SAVI): LIFE (Linked Institutions for Future EarthA.T.H. acknowledges support provided by NSF grant EAR- 1415206 under the Science, Engineering and Education for Sustainability (SEES
Metabolic Disorder Dysfunction in Parkinson’s Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson’s disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism
Commuting self-adjoint extensions of symmetric operators defined from the partial derivatives
We consider the problem of finding commuting self-adjoint extensions of the
partial derivatives {(1/i)(\partial/\partial x_j):j=1,...,d} with domain
C_c^\infty(\Omega) where the self-adjointness is defined relative to
L^2(\Omega), and \Omega is a given open subset of R^d. The measure on \Omega is
Lebesgue measure on R^d restricted to \Omega. The problem originates with I.E.
Segal and B. Fuglede, and is difficult in general. In this paper, we provide a
representation-theoretic answer in the special case when \Omega=I\times\Omega_2
and I is an open interval. We then apply the results to the case when \Omega is
a d-cube, I^d, and we describe possible subsets \Lambda of R^d such that
{e^(i2\pi\lambda \dot x) restricted to I^d:\lambda\in\Lambda} is an orthonormal
basis in L^2(I^d).Comment: LaTeX2e amsart class, 18 pages, 2 figures; PACS numbers 02.20.Km,
02.30.Nw, 02.30.Tb, 02.60.-x, 03.65.-w, 03.65.Bz, 03.65.Db, 61.12.Bt,
61.44.B
Twirling and Whirling: Viscous Dynamics of Rotating Elastica
Motivated by diverse phenomena in cellular biophysics, including bacterial
flagellar motion and DNA transcription and replication, we study the overdamped
nonlinear dynamics of a rotationally forced filament with twist and bend
elasticity. Competition between twist injection, twist diffusion, and writhing
instabilities is described by a novel pair of coupled PDEs for twist and bend
evolution. Analytical and numerical methods elucidate the twist/bend coupling
and reveal two dynamical regimes separated by a Hopf bifurcation: (i)
diffusion-dominated axial rotation, or twirling, and (ii) steady-state
crankshafting motion, or whirling. The consequences of these phenomena for
self-propulsion are investigated, and experimental tests proposed.Comment: To be published in Physical Review Letter
Studying large plainchant corpora using chant21
We present chant21, a Python package to support the plainchant formats gabc and Volpiano in music21, and two large corpora of plainchant. The CantusCorpus contains over 60,000 medieval melodies collected from the Cantus database, encoded in the Volpiano typeface. The GregoBaseCorpus contains over 9,000 transcriptions from more recent chant books in the gabc format. Chant21 converts both formats to music21, while retaining the textual structure of the chant: its division in sections, words, syllables and neumes. We present two case studies. First, we report evidence for the melodic arch hypothesis from the GregoBaseCorpus. Second, we analyze connections between differentiæ and antiphon openings in the CantusCorpus, and show that the systematicity of the connection can be quantified using an entropy-based measure
- …