9,116 research outputs found

    Pressure application technique for high-temperature composite fabrication

    Get PDF
    Technique utilizes characteristic of room-temperature vulcanizing rubber (RTV) which expands readily when heated. RTV expansion can exert uniform pressure on filament-reinforced polymer materials during curing. Technology accommodates high-temperature pressure application for P13-N polyimide composite consolidation during cure

    Thermal control system for a spacecraft modular housing

    Get PDF
    The development of a thermal control system for a spacecraft module is discussed. The wall structures are composed of superinsulation in some cases and of thermally conductive material in other cases. Heat pipes are installed to provide a path of heat transfer from the interior of the module to space. The design of the system makes it possible to maintain a relatively uniform temperature throughout the module with side variations of the amount of heat dissipated by the components within the module

    Factorization and reduction methods for optimal control of distributed parameter systems

    Get PDF
    A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given

    The background for Skylab experiment T-002, manual navigation sightings

    Get PDF
    The background of the NASA-DOD manual navigation experiment (T002) on Skylab A is reviewed with emphasis on NASA's development of an error model for sextant measurements in midcourse navigation and on USAF's development of a low earth orbit manual navigation scheme. Instruments briefly described are a space sextant and space stadimeter, both of which are used by USAF in orbit navigation, the sextant by NASA in midcourse sightings. The rationale, data requirements, and data reduction procedures are discussed in terms of the goals of the agencies

    The 5g yields 4f pionic transition in Th 232 and U 238

    Get PDF
    X ray energy measurements in 5g yields 4f pionic transitions of Th-232 and U-23

    IVA the robot: Design guidelines and lessons learned from the first space station laboratory manipulation system

    Get PDF
    The first interactive Space Station Freedom (SSF) lab robot exhibit was installed at the Space and Rocket Center in Huntsville, AL, and has been running daily since. IntraVehicular Activity (IVA) the robot is mounted in a full scale U.S. Lab (USL) mockup to educate the public on possible automation and robotic applications aboard the SSF. Responding to audio and video instructions at the Command Console, exhibit patrons may prompt IVA to perform a housekeeping task or give a speaking tour of the module. Other exemplary space station tasks are simulated and the public can even challenge IVA to a game of tic tac toe. In anticipation of such a system being built for the Space Station, a discussion is provided of the approach taken, along with suggestions for applicability to the Space Station Environment

    COLD-SAT: An orbital cryogenic hydrogen technology experiment

    Get PDF
    The COLD-SAT spacecraft will perform subcritical liquid hydrogen storage and transfer experiments under low-gravity conditions to provide engineering data for future space transportation missions. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 460 km circular orbit by an Atlas I commercial launch vehicle. After deployment, the three-axis-controlled spacecraft bus will provide electric power, experiment control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(-6) to 10(-4)g. These accelerations are an important aspect of some of the experiments, as it is desired to know the effects that low gravity levels might have on the heat and mass transfer processes involved. The experiment module will contain the three liquid hydrogen tanks, valves, pressurization equipment, and instrumentation. At launch all the hydrogen will be in the largest tank, which has helium-purged MLI and is loaded and topped off by the hydrogen tanking system used for the Centaur upper stage of the Atlas. The two smaller tanks will be utilized in orbit for performing some of the experiments. The experiments are grouped into two classes on the basis of their priority, and include six regarded as enabling technology and nine regarded as enhancing technology

    The 2p yields 1s pionic transition

    Get PDF
    Pion-atomic transitions, perturbation theory, S waves, and P wave

    Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Get PDF
    Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted

    The 2s atomic level in muonic 208-Pb

    Get PDF
    Relative intensities and energy measurements of 2s level in muonic Pb-20
    • …
    corecore