18 research outputs found

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Calculation of a temperature-volume phase diagram of water to inform the study of isochoric freezing down to cryogenic temperatures

    Full text link
    Phase diagrams are integral to the application and interpretation of materials thermodynamics, and none is more ubiquitous than the common Temperature-Pressure diagram of water and its many icy phases. Inspired by recent advances in isochoric thermodynamics, we here employ a simple convex hull approach to efficiently calculate an updated Temperature-Volume phase diagram for water and five of its solid polymorphs from existing Helmholtz free energy data. We proceed to highlight fundamental similarities between this T-V diagram and conventional binary temperature-concentration (T-x) diagrams, provide the volume coordinates of a variety of three-phase invariant reactions (e.g. 'confined' or 'volumetric' eutectics, peritectics, etc.) that occur amongst the phases of pure water under isochoric or confined conditions, and calculate the phase fraction evolution of Ice Ih with temperature along multiple isochores of interest to experimental isochoric freezing. This work provides a requisite baseline upon which to extend the study of isochoric freezing to cryogenic temperatures, with potential applications in thermodynamic metrology, cryovolcanism, and cryopreservation.Comment: Updated with new phase fraction calculations and additional methods informatio

    Methods to stabilize aqueous supercooling identified by use of an isochoric nucleation detection (INDe) device.

    No full text
    Stable aqueous supercooling has shown significant potential as a technique for human tissue preservation, food cold storage, conservation biology, and beyond, but its stochastic nature has made its translation outside the laboratory difficult. In this work, we present an isochoric nucleation detection (INDe) platform for automated, high-throughput characterization of aqueous supercooling at >1 mL volumes, which enables statistically-powerful determination of the temperatures and time periods for which supercooling in a given aqueous system will remain stable. We employ the INDe to investigate the effects of thermodynamic, surface, and chemical parameters on aqueous supercooling, and demonstrate that various simple system modifications can significantly enhance supercooling stability, including isochoric (constant-volume) confinement, hydrophobic container walls, and the addition of even mild concentrations of solute. Finally, in order to enable informed design of stable supercooled biopreservation protocols, we apply a statistical model to estimate stable supercooling durations as a function of temperature and solution chemistry, producing proof-of-concept supercooling stability maps for four common cryoprotective solutes

    Individual Microparticle Manipulation Using Combined Electroosmosis and Dielectrophoresis through a Si3N4 Film with a Single Micropore.

    No full text
    Porous dielectric membranes that perform insulator-based dielectrophoresis or electroosmotic pumping are commonly used in microchip technologies. However, there are few fundamental studies on the electrokinetic flow patterns of single microparticles around a single micropore in a thin dielectric film. Such a study would provide fundamental insights into the electrokinetic phenomena around a micropore, with practical applications regarding the manipulation of single cells and microparticles by focused electric fields. We have fabricated a device around a silicon nitride film with a single micropore (2-4 µm in diameter) which has the ability to locally focus electric fields on the micropore. Single microscale polystyrene beads were used to study the electrokinetic flow patterns. A mathematical model was developed to support the experimental study and evaluate the electric field distribution, fluid motion, and bead trajectories. Good agreement was found between the mathematic model and the experimental data. We show that the combination of electroosmotic flow and dielectrophoretic force induced by direct current through a single micropore can be used to trap, agglomerate, and repel microparticles around a single micropore without an external pump. The scale of our system is practically relevant for the manipulation of single mammalian cells, and we anticipate that our single-micropore approach will be directly employable in applications ranging from fundamental single cell analyses to high-precision single cell electroporation or cell fusion

    Effects of Isochoric Freezing on the Quality Characteristics of Raw Bovine Milk

    No full text
    This study investigated the effects of isochoric freezing (IF) on the shelf-life and quality of raw bovine milk over a 5-week period. The results were compared with conventional refrigeration (RF) and refrigeration after pasteurization (HTST). The IF treatment process entailed storing liquid raw milk in isochoric chambers in thermodynamic equilibrium at −5 °C/77 MPa and −10 °C/96 MPa. Several parameters were analyzed, including microbiology count, physicochemical properties, indigenous enzyme activity, protein content, volatile organic compounds profile, and lipid degradation. Both raw and pasteurized milk experienced increases in the microbial level past the acceptable threshold (≥5.5 log CFU/mL) after 2 weeks and 5 weeks, respectively, leading to the deterioration of other parameters during storage. In comparison, microbiology count decreased significantly during storage for both IF treatment conditions but was more pronounced for the higher pressure (96 MPa) treatment, leading to undetectable levels of microorganism after 5 weeks. IF treatment maintained stable pH, titratable acidity, viscosity, lipid oxidation, volatile profiles, total protein content, and lactoperoxidase activity throughout the storage period. Color was preserved during IF treatment at −5 °C/77 MPa; however, color was impacted during IF treatment at −10 °C/96 MPa. Protein structures were also modified during pressurized storage in both IF treatments. Overall, the study demonstrated that isochoric freezing could significantly increase the shelf-life of milk by reducing microbiology activity, whilst maintaining its nutritional content. These results underscore the potential role of isochoric freezing as a valuable tool in eliminating pathogens while maintaining quality characteristics similar to raw milk over long storage periods
    corecore