25,314 research outputs found

    Advanced high-temperature electromagnetic pump

    Get PDF
    Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed

    Epitaxial growth of 6H silicon carbide in the temperature range 1320 C to 1390 C

    Get PDF
    High-quality epitaxial layers of 6H SiC have been grown on 6H SiC substrates with the grown direction perpendicular to the crystal c-axis. The growth was by chemical vapor deposition from methyltrichlorosilane (CH3SiCl3) in hydrogen at temperatures in the range of 1320 to 1390 C. Epitaxial layers up to 80 microns thick were grown at rates of 0.4 microns/min. Attempts at growth on the (0001) plane of 6H SiC substrates under similar conditions resulted in polycrystalline cubic SiC layers. Optical and X-ray diffraction techniques were used to characterize the grown layers

    Fabrication and test of a space power boiler feed electromagnetic pump. 3: Endurance and final performance tests

    Get PDF
    A three-phase helical induction electromagnetic pump designed for the boiler feed pump of a potassium Rankine cycle space power system was developed and built. It was mounted in a liquid metal test loop and successfully tested over a range of potassium temperatures from 900 to 1400 F, flow rates from 0.75 to 4.85 lb/sec, developed pressures up to 340 psi, net positive suction head from 1 to 22 psi, and NaK coolant temperatures from 800 to 950 F. Maximum efficiency at design point conditions of 3.25 lb/sec flow rate, 240 psi developed head, 1000 F potassium inlet temperature, and 800 F NaK coolant inlet temperature was 16.3 percent. After the performance tests the pump was operated without any difficulty at design point for 10,000 hours, and then a limited number of repeat performance tests were made. There was no appreciable change in pump performance after 10,000 hours of operation. A supplementary series of tests using the quasi-square wave power output of a dc to three-phase ac inverter showed that the pump would operate without difficulty at a frequency as low as 25 Hz, with little loss in efficiency

    Iodine generator for disinfecting reclaimed water

    Get PDF
    System dispenses iodine into water tank automatically in quantities varying from 0.5 to 20 ppm. It stores 180-day supply of iodine crystals, sufficient to support six people consuming water at rate of 4.5 to 13.6 kg per person per day

    Iodine generator for reclaimed water purification

    Get PDF
    The system disclosed is for controlling the iodine level in a water supply in a spacecraft. It includes an iodine accumulator which stores crystalline iodine, an electrochemical valve to control the input of iodine to the drinking water and an iodine dispenser. A pump dispenses fluid through the iodine dispenser and an iodine sensor to a potable water tank storage. The iodine sensor electronically detects the iodine level in the water, and through electronic means, produces a correction current control. The correction current control operates the electro-chemical iodine valve to release iodine from the iodine accumulator into the iodine dispenser

    Sensitivity of the photo-physical properties of organometallic complexes to small chemical changes

    Full text link
    We investigate an effective model Hamiltonian for organometallic complexes that are widely used in optoelectronic devices. The two most important parameters in the model are JJ, the effective exchange interaction between the π\pi and π∗\pi^* orbitals of the ligands, and ϵ∗\epsilon^*, the renormalized energy gap between the highest occupied orbitals on the metal and on the ligand. We find that the degree of metal-to-ligand charge transfer (MLCT) character of the lowest triplet state is strongly dependent on the ratio ϵ∗/J\epsilon^*/J. ϵ∗\epsilon^* is purely a property of the complex and can be changed significantly by even small variations in the complex's chemistry, such as replacing substituents on the ligands. We find that that small changes in ϵ∗/J\epsilon^*/J can cause large changes in the properties of the complex, including the lifetime of the triplet state and the probability of injected charges (electrons and holes) forming triplet excitations. These results give some insight into the observed large changes in the photophysical properties of organometallic complexes caused by small changes in the ligands.Comment: Accepted for publication in J. Chem. Phys. 14 pages, 9 figures, Supplementary Info: 15 pages, 17 figure

    One-man, self-contained CO2 concentrating system

    Get PDF
    A program to design, fabricate, and test a 1-man, self-contained, electrochemical CO2 concentrating system is described. The system was designed with electronic controls and instrumentation to regulate performance, to analyze and display performance trends, and to detect and isolate faults. Ground support accessories were included to provide power, fluids, and a Parametric Data Display allowing real time indication of operating status in engineering units

    Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot

    Get PDF
    The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance

    Development of an iodine generator for reclaimed water purification in manned spacecraft applications

    Get PDF
    A successful 30-day test is described of a prototype Iodine Generating and Dispensing System (IGDS). The IGDS was sized to iodinate the drinking water nominally consumed by six men, 4.5 to 13.6 kg (10 to 30 lb) water per man-day with a + or - 10 to 20% variation with iodine (I2) levels of 0.5 to 20 parts per million (ppm). The I2 treats reclaimed water to prevent or eliminate microorganism contamination. Treatment is maintained with a residual of I2 within the manned spacecraft water supply. A simplified version of the chlorogen water disinfection concept, developed by life systems for on-site generation of chlorine (Cl2), was used as a basis for IGDS development. Potable water contaminated with abundant E. Coliform Group organisms was treated by electrolytically generated I2 at levels of 5 to 10 ppm. In all instances, the E. coli were eliminated
    • …
    corecore