10 research outputs found

    Microwave cavity light shining through a wall optimization and experiment

    Full text link
    It has been proposed that microwave cavities can be used in a photon regeneration experiment to search for hidden sector photons. Using two isolated cavities, the presence of hidden sector photons could be inferred from a 'light shining through a wall' phenomenon. The sensitivity of the experiment has strong a dependence on the geometric construction and electromagnetic mode properties of the two cavities. In this paper we perform an in depth investigation to determine the optimal setup for such an experiment. We also describe the results of our first microwave cavity experiment to search for hidden sector photons. The experiment consisted of two cylindrical copper cavities stacked axially inside a single vacuum chamber. At a hidden sector photon mass of 37.78 micro eV we place an upper limit on the kinetic mixing parameter chi = 2.9 * 10^(-5). Whilst this result lies within already established limits our experiment validates the microwave cavity `light shining through a wall' concept. We also show that the experiment has great scope for improvement, potentially able to reduce the current upper limit on the mixing parameter chi by several orders of magnitude.Comment: To be published in PR

    Microwave cavity hidden sector photon threshold crossing

    Full text link
    Hidden sector photons are a weakly interacting slim particle arising from an additional U(1) gauge symmetry predicted by many standard model extensions. We present and demonstrate a new experimental method using a single microwave cavity to search for hidden sector photons. Only photons with a great enough energy are able to oscillate into hidden sector photons of a particular mass. If our cavity is driven on resonance and tuned over the corresponding threshold frequency, there is an observable drop in the circulating power signifying the creation of hidden sector photons. This approach avoids the problems of microwave leakage and frequency matching inherent in photon regeneration techniques

    Two-dimensional optomechanical crystal resonator in gallium arsenide

    Full text link
    In the field of quantum computation and communication there is a compelling need for quantum-coherent frequency conversion between microwave electronics and infra-red optics. A promising platform for this is an optomechanical crystal resonator that uses simultaneous photonic and phononic crystals to create a co-localized cavity coupling an electromagnetic mode to an acoustic mode, which then via electromechanical interactions can undergo direct transduction to electronics. The majority of work in this area has been on one-dimensional nanobeam resonators which provide strong optomechanical couplings but, due to their geometry, suffer from an inability to dissipate heat produced by the laser pumping required for operation. Recently, a quasi-two-dimensional optomechanical crystal cavity was developed in silicon exhibiting similarly strong coupling with better thermalization, but at a mechanical frequency above optimal qubit operating frequencies. Here we adapt this design to gallium arsenide, a natural thin-film single-crystal piezoelectric that can incorporate electromechanical interactions, obtaining a mechanical resonant mode at f_m ~ 4.5 GHz ideal for superconducting qubits, and demonstrating optomechanical coupling g_om/(2pi) ~ 650 kHz

    Quantum erasure using entangled surface acoustic phonons

    Full text link
    Using the deterministic, on-demand generation of two entangled phonons, we demonstrate a quantum eraser protocol in a phononic interferometer where the which-path information can be heralded during the interference process. Omitting the heralding step yields a clear interference pattern in the interfering half-quanta pathways; including the heralding step suppresses this pattern. If we erase the heralded information after the interference has been measured, the interference pattern is recovered, thereby implementing a delayed-choice quantum erasure. The test is implemented using a closed surface-acoustic-wave communication channel into which one superconducting qubit can emit itinerant phonons that the same or a second qubit can later re-capture. If the first qubit releases only half of a phonon, the system follows a superposition of paths during the phonon propagation: either an itinerant phonon is in the channel, or the first qubit remains in its excited state. These two paths are made to constructively or destructively interfere by changing the relative phase of the two intermediate states, resulting in a phase-dependent modulation of the first qubit's final state, following interaction with the half-phonon. A heralding mechanism is added to this construct, entangling a heralding phonon with the signalling phonon. The first qubit emits a phonon herald conditioned on the qubit being in its excited state, with no signaling phonon, and the second qubit catches this heralding phonon, storing which-path information which can either be read out, destroying the signaling phonon's self-interference, or erased.Comment: 16 pages, 8 figure

    Developing a platform for linear mechanical quantum computing

    Full text link
    Linear optical quantum computing provides a desirable approach to quantum computing, with a short list of required elements. The similarity between photons and phonons points to the interesting potential for linear mechanical quantum computing (LMQC), using phonons in place of photons. While single-phonon sources and detectors have been demonstrated, a phononic beamsplitter element remains an outstanding requirement. Here we demonstrate such an element, using two superconducting qubits to fully characterize a beamsplitter with single phonons. We further use the beamsplitter to demonstrate two-phonon interference, a requirement for two-qubit gates, completing the toolbox needed for LMQC. This advance brings linear quantum computing to a fully solid-state system, along with straightforward conversion between itinerant phonons and superconducting qubits

    Resonant Regeneration in the Sub-Quantum Regime -- A demonstration of fractional quantum interference

    Get PDF
    Light shining through wall experiments (in the optical as well as in the microwave regime) are a powerful tool to search for light particles coupled very weakly to photons such as axions or extra hidden sector photons. Resonant regeneration, where a resonant cavity is employed to enhance the regeneration rate of photons, is one of the most promising techniques to improve the sensitivity of the next generation of experiments. However, doubts have been voiced if such methods work at very low regeneration rates where on average the cavity contains less than one photon. In this note we report on a demonstration experiment using a microwave cavity driven with extremely low power, to show that resonant amplification works also in this regime. In accordance with standard quantum mechanics this is a demonstration that interference also works at the level of less than one quantum. As an additional benefit this experiment shows that thermal photons inside the cavity cause no adverse effects.Comment: 14 pages, 5 figure

    Microwave hidden sector photons at UWA

    No full text
    In these proceedings we present the latest progress on our microwave cavity light shining through a wall hidden sector photon experiment, as well as introduce a new method of hidden sector photon detection. Our new experiment uses a high Q superconducting Niobium emitter cavity and moderate Q room temperature copper detector cavity separated by ample shielding. The projected sensitivity of our setup to the kinetic mixing factor is χ∼1.8×10−8\chi \sim 1.8 \times 10^{-8} at a hidden sector photon mass of 52.1 μ\mueV. A new technique for detecting hidden sector photons using a threshold crossing is also presented

    A fast and large bandwidth superconducting variable coupler

    No full text
    International audienceVariable microwave-frequency couplers are highly useful components in classical communication systems, and likely will play an important role in quantum communication applications. Conventional semiconductor-based microwave couplers have been used with superconducting quantum circuits, enabling for example the in situ measurements of multiple devices via a common readout chain. However, the semiconducting elements are lossy, and furthermore dissipate energy when switched, making them unsuitable for cryogenic applications requiring rapid, repeated switching. Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching and are easily integrated with superconducting quantum circuits. These enable on-chip, quantum-coherent routing of microwave photons, providing an appealing alternative to semiconductor switches. Here, we present and characterize a chip-based broadband microwave variable coupler, tunable over 4-8 GHz with over 1.5 GHz instantaneous bandwidth, based on the superconducting quantum interference device (SQUID) with two parallel Josephson junctions. The coupler is dissipation-free, features large on-off ratios in excess of 40 dB, and the coupling can be changed in about 10 ns. The simple design presented here can be readily integrated with superconducting qubit circuits, and can be easily generalized to realize a four- or more port device
    corecore