478 research outputs found

    Effects of aerobic versus cognitively demanding exercise interventions on brain structure and function in healthy children:Results from a cluster randomized controlled trial

    Get PDF
    The beneficial effects of physical activity on neurocognitive functioning in children are considered to be facilitated by physical activity-induced changes in brain structure and functioning. In this study, we examined the effects of two 14-week school-based exercise interventions in healthy children on white matter microstructure and brain activity in resting-state networks (RSNs) and whether changes in white matter microstructure and RSN activity mediate the effects of the exercise interventions on neurocognitive functioning. A total of 93 children were included in this study (51% girls, mean age 9.13 years). The exercise interventions consisted of four physical education lessons per week, focusing on either aerobic or cognitively demanding exercise and were compared with a control group that followed their regular physical education program of two lessons per week. White matter microstructure was assessed using diffusion tensor imaging in combination with tract-based spatial statistics. Independent component analysis was performed on resting-state data to identify RSNs. Furthermore, neurocognitive functioning (information processing and attention, working memory, motor response inhibition, interference control) was assessed by a set of computerized tasks. Results indicated no Group × Time effects on white matter microstructure or RSN activity, indicating no effects of the exercise interventions on these aspects of brain structure and function. Likewise, no Group × Time effects were found for neurocognitive performance. This study indicated that 14-week school-based interventions regarding neither aerobic exercise nor cognitive-demanding exercise interventions influence brain structure and brain function in healthy children. This study was registered in the Netherlands Trial Register (NTR5341)

    The relationship between white matter microstructure, cardiovascular fitness, gross motor skills, and neurocognitive functioning in children

    Get PDF
    Recent evidence indicates that both cardiovascular fitness and gross motor skill performance are related to enhanced neurocognitive functioning in children by influencing brain structure and functioning. This study investigates the role of white matter microstructure in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning in healthy children. In total 92 children (mean age 9.1 years, range 8.0–10.7) were included in this study. Cardiovascular fitness and gross motor skill performance were assessed using performance‐based tests. Neurocognitive functioning was assessed using computerized tests (working memory, inhibition, interference control, information processing, and attention). Diffusion tensor imaging was used in combination with tract‐based spatial statistics to assess white matter microstructure as defined by fractional anisotropy (FA), axial and radial diffusivity (AD, RD). The results revealed positive associations of both cardiovascular fitness and gross motor skills with neurocognitive functioning. Information processing and motor response inhibition were associated with FA in a cluster located in the corpus callosum. Within this cluster, higher cardiovascular fitness and better gross motor skills were both associated with greater FA, greater AD, and lower RD. No mediating role was found for FA in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning. The results indicate that cardiovascular fitness and gross motor skills are related to neurocognitive functioning as well as white matter microstructure in children. However, this study provides no evidence for a mediating role of white matter microstructure in these relationships

    Resting state networks mediate the association between both cardiovascular fitness and gross motor skills with neurocognitive functioning

    Get PDF
    Recent evidence suggests that cardiovascular fitness and gross motor skill performance are related to neurocognitive functioning by influencing brain structure and functioning. This study investigates the role of resting-state networks (RSNs) in the relation of cardiovascular fitness and gross motor skills with neurocognitive functioning in healthy 8- to 11-year-old children (n = 90, 45 girls, 10% migration background). Cardiovascular fitness and gross motor skills were related to brain activity in RSNs. Furthermore, brain activity in RSNs mediated the relation of both cardiovascular fitness (Frontoparietal network and Somatomotor network) and gross motor skills (Somatomotor network) with neurocognitive functioning. The results indicate that brain functioning may contribute to the relation between both cardiovascular fitness and gross motor skills with neurocognitive functioning

    Effect of COVID-19 vaccination on transmission of Alpha and Delta variants

    Get PDF
    BACKGROUND: Before the emergence of the B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination reduced transmission of SARS-CoV-2 from vaccinated persons who became infected, potentially by reducing viral loads. Although vaccination still lowers the risk of infection, similar viral loads in vaccinated and unvaccinated persons who are infected with the delta variant call into question the degree to which vaccination prevents transmission. METHODS: We used contact-testing data from England to perform a retrospective observational cohort study involving adult contacts of SARS-CoV-2–infected adult index patients. We used multivariable Poisson regression to investigate associations between transmission and the vaccination status of index patients and contacts and to determine how these associations varied with the B.1.1.7 (alpha) and delta variants and time since the second vaccination. RESULTS: Among 146,243 tested contacts of 108,498 index patients, 54,667 (37%) had positive SARS-CoV-2 polymerase-chain-reaction (PCR) tests. In index patients who became infected with the alpha variant, two vaccinations with either BNT162b2 or ChAdOx1 nCoV-19 (also known as AZD1222), as compared with no vaccination, were independently associated with reduced PCR positivity in contacts (adjusted rate ratio with BNT162b2, 0.32; 95% confidence interval [CI], 0.21 to 0.48; and with ChAdOx1 nCoV-19, 0.48; 95% CI, 0.30 to 0.78). Vaccine-associated reductions in transmission of the delta variant were smaller than those with the alpha variant, and reductions in transmission of the delta variant after two BNT162b2 vaccinations were greater (adjusted rate ratio for the comparison with no vaccination, 0.50; 95% CI, 0.39 to 0.65) than after two ChAdOx1 nCoV-19 vaccinations (adjusted rate ratio, 0.76; 95% CI, 0.70 to 0.82). Variation in cycle-threshold (Ct) values (indicative of viral load) in index patients explained 7 to 23% of vaccine-associated reductions in transmission of the two variants. The reductions in transmission of the delta variant declined over time after the second vaccination, reaching levels that were similar to those in unvaccinated persons by 12 weeks in index patients who had received ChAdOx1 nCoV-19 and attenuating substantially in those who had received BNT162b2. Protection in contacts also declined in the 3-month period after the second vaccination. CONCLUSIONS: Vaccination was associated with a smaller reduction in transmission of the delta variant than of the alpha variant, and the effects of vaccination decreased over time. PCR Ct values at diagnosis of the index patient only partially explained decreased transmission. (Funded by the U.K. Government Department of Health and Social Care and others.

    Randlengte en ruimtelijke samenhang van natuur in de Ecologische Hoofdstructuur : een eerste verkenning

    Get PDF
    Dit rapport van het Natuurplanbureau verkent twee methoden om ruimtelijke optimalisatie van de ligging van natuurgebieden te bepale

    Mortality risks associated with empirical antibiotic activity in E. coli bacteraemia: an analysis of electronic health records

    Get PDF
    Background: Reported bacteraemia outcomes following inactive empirical antibiotics (based on in vitro testing) are conflicting, potentially reflecting heterogeneity in causative species, MIC breakpoints defining resistance/susceptibility, and times to rescue therapy. Methods: We investigated adult inpatients with Escherichia coli bacteraemia at Oxford University Hospitals, UK, from 4 February 2014 to 30 June 2021 who were receiving empirical amoxicillin/clavulanate with/without other antibiotics. We used Cox regression to analyse 30 day all-cause mortality by in vitro amoxicillin/clavulanate susceptibility (activity) using the EUCAST resistance breakpoint (>8/2 mg/L), categorical MIC, and a higher resistance breakpoint (>32/2 mg/L), adjusting for other antibiotic activity and confounders including comorbidities, vital signs and blood tests. Results: A total of 1720 E. coli bacteraemias (1626 patients) were treated with empirical amoxicillin/clavulanate. Thirty-day mortality was 193/1400 (14%) for any active baseline therapy and 52/320 (16%) for inactive baseline therapy (P = 0.17). With EUCAST breakpoints, there was no evidence that mortality differed for inactive versus active amoxicillin/clavulanate [adjusted HR (aHR) = 1.27 (95% CI 0.83–1.93); P = 0.28], nor of an association with active aminoglycoside (P = 0.93) or other active antibiotics (P = 0.18). Considering categorical amoxicillin/clavulanate MIC, MICs > 32/2 mg/L were associated with mortality [aHR = 1.85 versus MIC = 2/2 mg/L (95% CI 0.99–3.73); P = 0.054]. A higher resistance breakpoint (>32/2 mg/L) was independently associated with higher mortality [aHR = 1.82 (95% CI 1.07–3.10); P = 0.027], as were MICs > 32/2 mg/L with active empirical aminoglycosides [aHR = 2.34 (95% CI 1.40–3.89); P = 0.001], but not MICs > 32/2 mg/L with active non-aminoglycoside antibiotic(s) [aHR = 0.87 (95% CI 0.40–1.89); P = 0.72]. Conclusions: We found no evidence that EUCAST-defined amoxicillin/clavulanate resistance was associated with increased mortality, but a higher resistance breakpoint (MIC > 32/2 mg/L) was. Additional active baseline non-aminoglycoside antibiotics attenuated amoxicillin/clavulanate resistance-associated mortality, but aminoglycosides did not. Granular phenotyping and comparison with clinical outcomes may improve AMR breakpoints

    Low-dose glucocorticoid treatment affects multiple aspects of intermediary metabolism in healthy humans: a randomised controlled trial

    Get PDF
    AIM/HYPOTHESIS: To assess whether low-dose glucocorticoid treatment induces adverse metabolic effects, as is evident for high glucocorticoid doses. METHODS: In a randomised placebo-controlled double-blind (participants and the investigators who performed the studies and assessed the outcomes were blinded) dose-response intervention study, 32 healthy men (age 22 +/- 3 years; BMI 22.4 +/- 1.7 kg/m(2)) were allocated to prednisolone 7.5 mg once daily (n = 12), prednisolone 30 mg once daily (n = 12), or placebo (n = 8) for 2 weeks using block randomisation. Main outcome measures were glucose, lipid and protein metabolism, measured by stable isotopes, before and at 2 weeks of treatment, in the fasted state and during a two-step hyperinsulinaemic clamp conducted in the Clinical Research Unit of the Academic Medical Centre, Amsterdam, the Netherlands RESULTS: Prednisolone, compared with placebo, dose dependently and significantly increased fasting plasma glucose levels, whereas only prednisolone 30 mg increased fasting insulin levels (29 +/- 15 pmol/l). Prednisolone 7.5 mg and prednisolone 30 mg decreased the ability of insulin to suppress endogenous glucose production (by 17 +/- 6% and 46 +/- 7%, respectively, vs placebo). Peripheral glucose uptake was not reduced by prednisolone 7.5 mg, but was decreased by prednisolone 30 mg by 34 +/- 6% (p < 0.0001). Compared with placebo, prednisolone treatment tended to decrease lipolysis in the fasted state (p = 0.062), but both prednisolone 7.5 mg and prednisolone 30 mg decreased insulin-mediated suppression of lipolysis by 11 +/- 5% and 34 +/- 6%, respectively. Finally, prednisolone treatment increased whole-body proteolysis during hyperinsulinaemia, which tended to be driven by prednisolone 30 mg (5 +/- 2%; p = 0.06). No side effects were reported by the study participants. All participants completed the study and were analysed. CONCLUSIONS/INTERPRETATION: Not only at high doses but also at low doses, glucocorticoid therapy impaired intermediary metabolism by interfering with the metabolic actions of insulin on liver and adipose tissue. These data indicate that even low-dose glucocorticoids may impair glucose tolerance when administered chronically. TRIAL REGISTRATION: ISRCTN83991850
    corecore