6 research outputs found

    Two-vibron bound states lifetime in a one-dimensional molecular lattice coupled to acoustic phonons

    Full text link
    The lifetime of two-vibron bound states in the overtone region of a one-dimensional anharmonic molecular lattice is investigated. The anharmonicity, introduced within an attractive Hubbard Hamiltonian for bosons, is responsible for the formation of bound states which belong to a finite linewidth band located below the continuum of two-vibron free states. The decay of these bound states into either bound or free states, is described by considering the coupling between the vibrons and a thermal bath formed by a set of low frequency acoustic phonons. The relaxation rate is expressed in terms of the spectral distribution of the vibron/phonon coupling and of the two-vibron Green operator which is calculated exactly by using the number states method. The behavior of the two-vibron bound states relaxation rate is analyzed with a special emphasis on the influence of the anharmonicity. It is shown that the rate exhibits two distinct regimes depending on the thermal bath dimension. When the bath dimension is equal to unity, the rate increases with the anharmonicity and the decay of the two-vibron bound states into the other bound states appears as the main contribution of the rate. By contrast, when the bath dimension is equal to 2 and 3, the rate decreases as the anharmonicity increases indicating that the two-vibron bound states decay into the two-vibron free states continuum.Comment: January 200

    Vibron-polaron critical localization in a finite size molecular nanowire

    Full text link
    The small polaron theory is applied to describe the vibron dynamics in an adsorbed nanowire with a special emphasis onto finite size effects. It is shown that the finite size of the nanowire discriminates between side molecules and core molecules which experience a different dressing mechanism. Moreover, the inhomogeneous behavior of the polaron hopping constant is established and it is shown that the core hopping constant depends on the lattice size. However, the property of a lattice with translational invariance is recovered when the size of the nanowire is greater than a critical value. Finally, it is pointed out that these features yield the occurrence of high energy localized states which both the nature and the number are summarized in a phase diagram in terms of the relevant parameters of the problem (small polaron binding energy, temperature, lattice size).Comment: 17 pages, 10 figure

    Fast energy transfer mediated by multi-quanta bound states in a nonlinear quantum lattice

    No full text
    28 pages, 8 figuresBy using a Generalized Hubbard model for bosons, the energy transfer in a nonlinear quantum lattice is studied, with special emphasis on the interplay between local and nonlocal nonlinearity. For a strong local nonlinearity, it is shown that the creation of v quanta on one site excites a soliton band formed by bound states involving v quanta trapped on the same site. The energy is first localized on the excited site over a significant timescale and then slowly delocalizes along the lattice. As when increasing the nonlocal nonlinearity, a faster dynamics occurs and the energy propagates more rapidly along the lattice. Nevertheless, the larger is the number of quanta, the slower is the dynamics. However, it is shown that when the nonlocal nonlinearity reaches a critical value, the lattice suddenly supports a very fast energy propagation whose dynamics is almost independent on the number of quanta. The energy is transfered by specific bound states formed by the superimposition of states involving v-p quanta trapped on one site and p quanta trapped on the nearest neighbour sites, with p=0,..,v-1. These bound states behave as independent quanta and they exhibit a dynamics which is insensitive to the nonlinearity and controlled by the single quantum hopping constant
    corecore