1,147 research outputs found

    Gamma-ray burst spectra from continuously accelerated electrons

    Get PDF
    We discuss here constraints on the particle acceleration models from the observed gamma-ray bursts spectra. The standard synchrotron shock model assumes that some fraction of available energy is given instantaneously to the electrons which are injected at high Lorentz factor. The emitted spectrum in that case corresponds to the spectrum of cooling electrons, F_\nu ~ \nu^{-1/2}, is much too soft to account for the majority of the observed spectral slopes. We show that continuous heating of electrons over the life-time of a source is needed to produce hard observed spectra. In this model, a prominent peak develops in the electron distribution at energy which is a strong function of Thomson optical depth \tau_T of heated electrons (pairs). At \tau_T>1, a typical electron Lorentz factor \gamma ~ 1-2 and quasi-thermal Comptonization operates. It produces spectrum peaking at a too high energy. Optical depths below 10^{-4} would be difficult to imagine in any physical scenario. At \tau_T =10^{-4}-10^{-2}, \gamma ~ 30-100 and synchrotron self-Compton radiation is the main emission mechanism. The synchrotron peak should be observed at 10--100 eV, while the self-absorbed low-energy tail with F_\nu ~ \nu^2 can produce the prompt optical emission (like in the case of GRB 990123). The first Compton scattering radiation by nearly monoenergetic electrons peaks in the BATSE energy band and can be as hard as F_\nu ~ \nu^1 reproducing the hardness of most of the observed GRB spectra. The second Compton peak should be observed in the high-energy gamma-ray band, possibly being responsible for the 10-100 MeV emission detected in GRB 941017. A significant electron-positron pair production reduces the available energy per particle, moving spectral peaks to lower energies as the burst progresses.Comment: 4 pages, 1 figure, Il nuovo cimento C, in press. Proceedings of the 4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 200

    A photon breeding mechanism for the high-energy emission of relativistic jets

    Full text link
    We propose a straightforward and efficient mechanism for the high-energy emission of relativistic astrophysical jets associated with an exchange of interacting high-energy photons between the jet and the external environment. Physical processes playing the main role in this mechanism are electron-positron pair production by photons and the inverse Compton scattering. This scenario has been studied analytically as well as with numerical simulations demonstrating that a relativistic jet (with the Lorentz factor larger than 3--4) moving through the sufficiently dense, soft radiation field inevitably undergoes transformation into a luminous state. The process has a supercritical character: the high-energy photons breed exponentially being fed directly by the bulk kinetic energy of the jet. Eventually particles feed back on the fluid dynamics and the jet partially decelerates. As a result, a significant fraction (at least 20 per cent) of the jet kinetic energy is converted into radiation mainly in the MeV -- GeV energy range. The mechanism maybe responsible for the bulk of the emission of relativistic jets in active galactic nuclei, microquasars and gamma-ray bursts.Comment: 10 pages, 9 figures; MNRAS, in pres

    The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars

    Full text link
    We reanalyze Fermi/LAT gamma-ray spectra of bright blazars with a higher photon statistics than in previous works and with new Pass 7 data representation. In the spectra of the brightest blazar 3C 454.3 and possibly of 4C +21.35 we detect breaks at 5 GeV (in the rest frame) associated with the photon-photon pair production absorption by He II Lyman continuum (LyC). We also detect confident breaks at 20 GeV associated with hydrogen LyC both in the individual spectra and in the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by hydrogen Ly complex over He II, rather small detected optical depth, and the break energy consistent with the head-on collisions with LyC photons imply that the gamma-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure producing little opacity. Alternatively, the LyC emission region size might be larger than the BLR size measured from reverberation mapping, and/or the gamma-ray emitting region is extended. These solutions would resolve a long-standing issue how the multi-hundred GeV photons can escape from the emission zone without being absorbed by softer photons.Comment: 7 pages, 6 figures; accepted to Ap

    Blind search for the real sample: Application to the origin of ultra-high energy cosmic rays

    Full text link
    We suggest a method for statistical tests which does not suffer from a posteriori manipulations with tested samples (e.g. cuts optimization) and does not require a somewhat obscure procedure of the penalty estimate. The idea of the method is to hide the real sample (before it has been studied) among a large number of artificial samples, drawn from a random distribution expressing the null hypothesis, and then to search for it as the one demonstrating the strongest hypothesized effect. The statistical significance of the effect in this approach is the inverse of the maximal number of random samples at which the search was successful. We have applied the method to revisit the problem of correlation between the arrival directions of ultra-high energy cosmic rays and BL Lac objects. No significant correlation was found.Comment: 4 pages, 1 figure, accepted to ApJ Letter

    Photon breeding mechanism in relativistic jets: astrophysical implications

    Full text link
    Photon breeding in relativistic jets involves multiplication of high-energy photons propagating from the jet to the external environment and back with the conversion into electron-positron pairs. The exponential growth of the energy density of these photons is a super-critical process powered by the bulk energy of the jet. The efficient deceleration of the jet outer layers creates a structured jet morphology with the fast spine and slow sheath. In initially fast and high-power jets even the spine can be decelerated efficiently leading to very high radiative efficiencies of conversion of the jet bulk energy into radiation. The decelerating, structured jets have angular distribution of radiation significantly broader than that predicted by a simple blob model with a constant Lorentz factor. This reconciles the discrepancy between the high Doppler factors determined by the fits to the spectra of TeV blazars and the low apparent velocities observed at VLBI scales as well as the low jet Lorentz factors required by the observed statistics and luminosity ratio of Fanaroff-Riley I radio galaxies and BL Lac objects. Photon breeding produces a population of high-energy leptons in agreement with the constraints on the electron injection function required by spectral fits of the TeV blazars. Relativistic pairs created outside the jet and emitting gamma-rays by inverse Compton process might explain the relatively high level of the TeV emission from the misaligned jet in the radio galaxies. The mechanism reproduces basic spectral features observed in blazars including the blazar sequence (shift of the spectral peaks towards lower energies with increasing luminosity). The mechanism is very robust and can operate in various environments characterised by the high photon density.Comment: 6 pages, 3 figures, to appear in the proceedings of the HEPRO conference, September 24-28, 2007, Dublin, Irelan

    X-ray burst induced spectral variability in 4U 1728-34

    Full text link
    Aims. INTEGRAL has been monitoring the Galactic center region for more than a decade. Over this time INTEGRAL has detected hundreds of type-I X-ray bursts from the neutron star low-mass X-ray binary 4U 1728-34, a.k.a. "the slow burster". Our aim is to study the connection between the persistent X-ray spectra and the X-ray burst spectra in a broad spectral range. Methods. We performed spectral modeling of the persistent emission and the X-ray burst emission of 4U 1728-34 using data from the INTEGRAL JEM-X and IBIS/ISGRI instruments. Results. We constructed a hardness intensity diagram to track spectral state variations. In the soft state the energy spectra are characterized by two thermal components - likely from the accretion disc and the boundary/spreading layer - together with a weak hard X-ray tail that we detect in 4U 1728-34 for the first time in the 40 to 80 keV range. In the hard state the source is detected up to 200 keV and the spectrum can be described by a thermal Comptonization model plus an additional component: either a powerlaw tail or reflection. By stacking 123 X-ray bursts in the hard state, we detect emission up to 80 keV during the X-ray bursts. We find that during the bursts the emission above 40 keV decreases by a factor of about three with respect to the persistent emission level. Conclusions. Our results suggest that the enhanced X-ray burst emission changes the spectral properties of the accretion disc in the hard state. The likely cause is an X-ray burst induced cooling of the electrons in the inner hot flow near the neutron star.Comment: 7 pages, 5 figures, Accepted for publication in A&

    On the Origin of Polarization near the Lyman Edge in Quasars

    Get PDF
    Optical/UV radiation from accretion disks in quasars is likely to be partly scattered by a hot plasma enveloping the disk. We investigate whether the scattering may produce the steep rises in polarization observed blueward of the Lyman limit in some quasars. We suggest and assess two models. In the first model, primary disk radiation with a Lyman edge in absorption passes through a static ionized "skin" covering the disk, which has a temperature about 3 keV and a Thomson optical depth about unity. Electron scattering in the skin smears out the edge and produces a steep rise in polarization at lambda < 912 A. In the second model, the scattering occurs in a hot coronal plasma outflowing from the disk with a mildly relativistic velocity. We find that the second model better explains the data. The ability of the models to fit the observed rises in polarization is illustrated with the quasar PG 1630+377.Comment: submitted to ApJ Letter

    Models of neutron star atmospheres enriched with nuclear burning ashes

    Get PDF
    Low-mass X-ray binaries hosting neutron stars (NS) exhibit thermonuclear (type-I) X-ray bursts, which are powered by unstable nuclear burning of helium and/or hydrogen into heavier elements deep in the NS "ocean". In some cases the burning ashes may rise from the burning depths up to the NS photosphere by convection, leading to the appearance of the metal absorption edges in the spectra, which then force the emergent X-ray burst spectra to shift toward lower energies. These effects may have a substantial impact on the color correction factor fcf_c and the dilution factor ww, the parameters of the diluted blackbody model FEwBE(fcTeff)F_E \approx w B_E(f_c T_{eff}) that is commonly used to describe the emergent spectra from NSs. The aim of this paper is to quantify how much the metal enrichment can change these factors. We have developed a new NS atmosphere modeling code, which has a few important improvements compared to our previous code required by inclusion of the metals. The opacities and the internal partition functions (used in the ionization fraction calculations) are now taken into account for all atomic species. In addition, the code is now parallelized to counter the increased computational load. We compute a detailed grid of atmosphere models with different exotic chemical compositions that mimic the presence of the burning ashes. From the emerging model spectra we compute the color correction factors fcf_c and the dilution factors ww that can then be compared to the observations. We find that the metals may change fcf_c by up to about 40%, which is enough to explain the scatter seen in the blackbody radius measurements. The presented models open up the possibility for determining NS mass and radii more accurately, and may also act as a tool to probe the nuclear burning mechanisms of X-ray bursts.Comment: 14 pages, 7 figures, to be published in A&

    Non-thermal radiation from Cygnus X-1 corona

    Get PDF
    Cygnus X-1 was the first X-ray source widely accepted to be a black hole candidate and remains among the most studied astronomical objects in its class. The detection of non-thermal radio, hard X-rays and gamma rays reveals the fact that this kind of objects are capable of accelerating particles up to very high energies. In order to explain the electromagnetic emission from Cygnus X-1 in the low-hard state we present a model of a black hole corona with both relativistic lepton and hadron content. We characterize the corona as a two-temperature hot plasma plus a mixed non-thermal population in which energetic particles interact with magnetic, photon and matter fields. Our calculations include the radiation emitted by secondary particles (pions, muons and electron/positron pairs). Finally, we take into account the effects of photon absorption. We compare the results obtained from our model with data of Cygnus X-1 obtained by the COMPTEL instrument.Comment: 6 pages, 10 figures, presented as a poster in HEPRO II, Buenos Aires, Argentina, October 26-30 2009 / accepted for publication in Int. Jour. Mod. Phys.
    corecore