2 research outputs found
Recommended from our members
A time-series prediction model of acute myocardial infarction in northern of Iran: the risk of climate change and religious mourning.
BackgroundAlthough various studies have been conducted on the effects of seasonal climate changes or emotional variables on the risk of AMI, many of them have limitations to determine the predictable model. The currents study is conducted to assess the effects of meteorological and emotional variables on the incidence and epidemiological occurrence of acute myocardial infarction (AMI) in Sari (capital of Mazandaran, Iran) during 2011-2018.MethodsIn this study, a time series analysis was used to determine the variation of variables over time. All series were seasonally adjusted and Poisson regression analysis was performed. In the analysis of meteorological data and emotional distress due to religious mourning events, the best results were obtained by autoregressive moving average (ARMA) (5,5) model.ResultsIt was determined that average temperature, sunshine, and rain variables had a significant effect on death. A total of 2375 AMI's were enrolled. Average temperate (°C) and sunshine hours a day (h/day) had a statistically significant relationship with the number of AMI's (β = 0.011, P = 0.014). For every extra degree of temperature increase, the risk of AMI rose [OR = 1.011 (95%CI 1.00, 1.02)]. For every extra hour of sunshine, a day a statistically significant increase [OR = 1.02 (95% CI 1.01, 1.04)] in AMI risk occurred (β = 0.025, P = 0.001). Religious mourning events increase the risk of AMI 1.05 times more. The other independent variables have no significant effects on AMI's (P > 0.05).ConclusionResults demonstrate that sunshine hours and the average temperature had a significant effect on the risk of AMI. Moreover, emotional distress due to religious morning events increases AMI. More specific research on this topic is recommended
Recommended from our members
Weather fluctuations: predictive factors in the prevalence of acute coronary syndrome.
Background: Meteorological parameters and seasonal changes can play an important role in the occurrence of acute coronary syndrome (ACS). However, there is almost no evidence on a national level to suggest the associations between these variables and ACS in Iran. We aim to identify the meteorological parameters and seasonal changes in relationship to ACS. Methods: This retrospective cross-sectional study was conducted between 03/19/2015 to 03/18/2016 and used documents and records of patients with ACS in Mazandaran ProvinceHeart Center, Iran. The following definitive diagnostic criteria for ACS were used: (1) existence of cardiac enzymes (CK or CK-MB) above the normal range; (2) Greater than 1 mm ST-segment elevation or depression; (3) abnormal Q waves; and (4) manifestation of troponin enzyme in the blood. Data were collected daily, such as temperature (Celsius) changes, wind speed and its direction, rainfall, daily evaporation rate; number of sunny days, and relative humidity were provided by the Meteorological Organization of Iran. Results: A sample of 2,054 patients with ACS were recruited. The results indicated the highest ACS events from March to May. Generally, wind speed (18 PM) [IRR = 1.051 (95% CI: 1.019 to1.083), P=0.001], daily evaporation [IRR = 1.039 (95% CI: 1.003 to 1.077), P=0.032], daily maximum (P<0.001) and minimum (P=0.003) relative humidity was positively correlated withACS events. Also, negatively correlated variables were daily relative humidity (18 PM) [IRR =0.985 (95% CI: 0.978 to 0.992), P<0.001], and daily minimum temperature [IRR = 0.942 (95%CI: 0.927 to 0.958), P<0.001]. Conclusion: Climate changes were found to be significantly associated with ACS; especially from cold weather to hot weather in March, April and May. Further research is needed to fully understand the specific conditions and cold exposures