56 research outputs found

    Viscous Modified Cosmic Chaplygin Gas Cosmology

    Full text link
    In this paper we construct modified cosmic Chaplygin gas which has viscosity. We use exponential function method to solve non-linear equation and obtain time-dependent dark energy density. Then discuss Hubble expansion parameter and scale factor and fix them by using observational data. We also investigate stability of this theory

    Corrections Terms for the Thermodynamics of a Black Saturn

    Get PDF
    In this paper, we will analyze the effects of thermal fluctuations on the stability of a black Saturn. The entropy of the black Saturn will get corrected due to these thermal fluctuations. We will demonstrate that the correction term generated by these thermal fluctuations is a logarithmic term. Then we will use this corrected value of the entropy to obtain bounds for various parameters of the black Saturn. We will also analyze the thermodynamical stability of the black Saturn in presence of thermal fluctuations, using this corrected value of the entropy.Comment: 15 pages, revised version has been accepted for publication in Phys. Lett.

    Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    Get PDF
    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn

    The lower bound violation of shear viscosity to entropy ratio due to logarithmic correction in STU model

    Full text link
    In this paper, we analyze the effects of thermal fluctuations on a STU black hole. We observe that these thermal fluctuations can affect the stability of a STU black hole. We will also analyze the effects of these thermal fluctuations on the thermodynamic of STU black hole. Furthermore, in the Jacobson formalism such a modification will produce a deformation of the geometry of the STU black hole. Hence, we use the AdS/CFT correspondence to analyze the effect of such a deformation on the dual quark-gluon plasma. So, we explicitly analyze the effect of thermal fluctuations on the shear viscosity to entropy ratio in the quark-gluon plasma, and analyze the effects of thermal fluctuations on this ratio

    Exponential corrected thermodynamics of black holes

    Full text link
    Recently, it is reported that thermal fluctuations which are interpreted as quantum effects, modify black holes entropy by an exponential term. We now find the effect of such modification on black hole mass and other thermodynamics quantities. We find that Schwarzschild black hole mass decreased by thermal fluctuations. Hence, we study exponential corrected thermodynamics and statistics of black holes by computing the partition function. We obtain special condition on the event horizon radius to satisfy Smarr-Gibbs-Duhem relation in the presence of quantum correction. As we know the Schwarzschild black hole is unstable, while the effect of exponential correction is the stability of 4D4D Schwarzschild black hole as well as the Schwarzschild-AdS black hole at a small area. On the other hand, a 5D5D Schwarzschild black hole is completely unstable. The effect of quantum correction on the Reissner-Nordstr\"{o}m black hole is instability at quantum scales. Finally, we consider the most general case of charged AdS black hole and study corrected thermodynamics.Comment: 19 pages, 15 figure

    Testing Quantum Gravity through Dumb Holes

    Full text link
    We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogues for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate that such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.Comment: Accepted for publication in Annals of Physic

    Thermodynamics and phase transitions of galactic clustering in higher-order Modified Gravity

    Full text link
    We study the thermodynamics of galactic clustering under the higher-order corrected Newtonian dynamics. The clustering of galaxies is considered as a gravitational phase transition. In order to study the effects of higher-order correction to the thermodynamics of gravitational system, we compute more exact equations of state. Moreover, we investigate the corrected probability distribution function for such gravitating system. A relation between order parameter and the critical temperature is also established.Comment: Accepted for publication in IJMP
    • …
    corecore