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In this paper, we will analyze the effects of thermal fluctuations on the stability of a black Saturn. The 
entropy of the black Saturn will get corrected due to these thermal fluctuations. We will demonstrate 
that the correction term generated by these thermal fluctuations is a logarithmic term. Then we will use 
this corrected value of the entropy to obtain bounds for various parameters of the black Saturn. We will 
also analyze the thermodynamical stability of the black Saturn in presence of thermal fluctuations, using 
this corrected value of the entropy.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

If entropy is not associated with a black hole, then the entropy 
of the universe will spontaneous reduce whenever an object with a 
finite entropy crosses the horizon. Thus, entropy has to be associ-
ated with a black hole to prevent the violation of the second law of 
thermodynamics [1,2]. In fact, black holes have more entropy than 
any other object of the same volume [3,4]. This prevents the vi-
olation of second law of thermodynamics. This maximum entropy 
of the black holes is proportional to the area of the horizon [5]. 
Thus, if S is the entropy associated with a black hole, and A is the 
area of the horizon, then the relation between S and A can be ex-
pressed as S = A/4. The observation that the entropy scales with 
the area of the black hole, instead of its volume, has motivated the 
development of the holographic principle [6,7]. The holographic 
principle states that the degrees of freedom in a region of space 
are the same as the degrees of freedom on the boundary surround-
ing that region of space. The geometry of black holes will undergo 
quantum fluctuations. These quantum corrections will lead to ther-
mal fluctuations. These thermal fluctuations will in turn generate 
correction terms for various thermodynamical quantities associ-
ated with black holes [8,9]. Thus the holographic principle can 
get modified near Planck scale [10,11]. It may be noted that even 
though the thermodynamics of black holes is expected to get cor-
rected due to thermal fluctuations, we can neglect such correction 
terms for large black holes. This is because these thermal fluctu-
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ations occur because of quantum fluctuations of the geometry of 
space–time, and such quantum fluctuations can be neglected for 
large black holes. However, as the black holes radiate Hawking ra-
diation, they tend to evaporate in course of time. Then the size of 
the black holes reduces in course of time due to the Hawking radi-
ation. As the black holes become smaller the quantum fluctuations
give more dominating contribution to the geometry of space–time. 
Thus, the thermal fluctuations cannot be neglected for small black 
holes, or for black hole at the last stages of their evaporation. The 
correction terms to the entropy of black holes coming from ther-
mal fluctuations have been calculated. It has been demonstrated 
that these correction terms are expressed as logarithmic functions 
of the original thermodynamic quantities.

The corrections to the thermodynamics of black holes have also 
been calculated using the density of microstates for asymptotically 
flat black holes [12]. This analysis has been done in the frame-
work of non-perturbative quantum general relativity. Here confor-
mal blocks of a well defined conformal field theory are associated 
with the density of states for a black hole. This density of states is 
then used to calculate the relation between the entropy of a black 
hole and the area of its horizon. The leading order relation be-
tween the entropy of a black hole and the area of its horizon is 
observed to be the standard Bekenstein entropy area relation for 
the large black holes. However, this relation between the area and 
entropy of a black hole gets corrected in this analysis. The lead-
ing order correction terms to the entropy of the black hole are 
demonstrated to be logarithmic corrections. It may be noted that 
such correction terms have also been calculated using the Cardy 
formula [13]. In fact, it has been demonstrated using this formula 
that such logarithmic correction terms will be generated for all 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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black holes whose microscopic degrees of freedom are described 
by a conformal field theory. The correction terms to the entropy of 
a BTZ black hole have been calculated using such logarithmic exact 
partition function [14]. It has been again observed that these cor-
rection terms can be expressed using logarithmic functions. It has 
also been possible to obtain logarithmic correction terms for the 
entropy of a black hole by analyzing matter fields in backgrounds 
of a black hole [15–17].

The correction terms generated from string theoretical effects 
can also be expressed using logarithmic functions [18–21]. The log-
arithmic correction terms for the entropy of a dilatonic black holes 
have been calculated [22]. Finally, the expansion of the partition 
function has also been used to calculate the correction terms for 
the entropy of a black hole [23]. Such correction terms obtained by 
using the expansion of the partition function again are logarithmic 
correction terms. The correction to the thermodynamics of black 
holes from generalized uncertainty principle has also been stud-
ied [24]. In this analysis the thermodynamics of the black holes 
gets modifies due to the generalization of the usual Heisenberg 
uncertainty principle. It has been demonstrated this modified ther-
modynamics of the black holes predicts the existence of a remnant 
for black holes. The existence of such remnants for black holes can 
have important phenomenological consequences [25].

As the quantum fluctuations can occur in all black hole geome-
tries, we expect that the thermodynamics of all black objects will 
get corrected due to thermal fluctuations. Thus, we can use the 
modified relation between the entropy and area to analyze the 
corrections for the thermodynamics of any black object. In this 
paper, we will analyze such correction terms for the thermody-
namics of black Saturn. The black Saturns are solutions to Einstein 
equations in higher dimensions. They are described by a black hole 
surrounded by a black ring [26,27]. This black ring is in thermo-
dynamical equilibrium with a spherical black hole. The thermody-
namics of black Saturn has been studied [28]. The thermodynamic 
equilibrium is obtained because of the rotation of the black ring. 
It is also possible to construct a black Saturn with a static black 
ring [29,30]. In this case, the system remains in thermodynamic 
equilibrium because of an external magnetic field. It may be noted 
that conditions for meta-stability of a black Saturn have also been 
studied [31]. It has been demonstrated that the black Saturn is 
causal stably on the closure of the domain of outer communica-
tions [32]. The relation between the black Saturn and Myers–Perry 
black hole has also been analyzed [33]. It may be noted that the 
thermodynamics of a charged dilatonic black Saturn has also been 
studied [34]. It is expected that both the black hole and black ring 
in a black Saturn will reduce in size due to the Hawking radiation. 
Thus, at a certain stage quantum fluctuations in the geometry of 
a black Saturn will also become important. To analyze the effect 
of these quantum fluctuations in the geometry of a black Saturn, 
we will need to analyze the thermal fluctuations in the thermo-
dynamics of black Saturn. So, we will study the corrections to the 
thermodynamics of a black Saturn by considering thermal fluctua-
tions around the equilibrium.

2. Black Saturn

In this section, we will review the thermodynamics of black 
Saturn. The metric for black Saturn can be written as [26]

ds2 = − H y

Hx

[
dt + (

ωψ

H y
+ q)dψ

]2

+ Hx

[
k2 P (dρ2 + dz2) + G y

H y
dψ2 + Gx

Hx
dϕ2

]
, (1)

where q and k are constants, and
Gx = μ4

μ3μ5
ρ2

G y = μ3μ5

μ4
. (2)

Here we have used

P = (μ3μ4 + ρ2)2(μ1μ5 + ρ2)(μ4μ5 + ρ2), (3)

and

μi =
√

ρ2 + (z − ai)
2 − (z − ai) = Ri − (z − ai). (4)

The real constant parameters ai (i = 1, . . . , 5) satisfy the following 
condition,

a1 ≤ a5 ≤ a4 ≤ a3 ≤ a2. (5)

Furthermore, we also have

Hx = M0 + c2
1 M1 + c2

2 M2 + c1c2M3 + c2
1c2

2 M4

F

H y = 1

F

μ3

μ4

[
μ1

μ2
M0 − c2

1 M1
ρ2

μ1μ2
− c2

2 M2
μ1μ2

ρ2
+ c1c2M3

+ c2
1c2

2 M4
μ2

μ1

]
, (6)

where c1 and c2 are real constants, and

M0 = μ2μ
2
5(μ1 − μ3)

2(μ2 − μ4)
2(ρ2 + μ1μ2)

2

× (ρ2 + μ1μ4)
2(ρ2 + μ2μ3)

2,

M1 = μ2
1μ2μ3μ4μ5ρ

2(μ1 − μ2)
2(μ2 − μ4)

2

× (μ1 − μ5)
2(ρ2 + μ2μ3)

2,

M2 = μ2μ3μ4μ5ρ
2(μ1 − μ2)

2(μ1 − μ3)
2

× (ρ2 + μ1μ4)
2(ρ2 + μ2μ5)

2,

M3 = 2μ1μ2μ3μ4μ5(μ1 − μ3)(μ1 − μ5)

× (μ2 − μ4)(ρ
2 + μ2

1)(ρ
2 + μ2

2)

× (ρ2 + μ1μ4)(ρ
2 + μ2μ3)(ρ

2 + μ2μ5),

M4 = μ2
1μ2μ

2
3μ

2
4(μ1 − μ5)

2(ρ2 + μ1μ2)
2(ρ2 + μ2μ5)

2, (7)

with

F = μ1μ5(μ1 − μ3)
2(μ2 − μ4)

2(ρ2 + μ1μ3)

× (ρ2 + μ2μ3)(ρ
2 + μ1μ4)(ρ

2 + μ2μ4)(ρ
2 + μ2μ5)

× (ρ2 + μ3μ5)(ρ
2 + μ2

1)(ρ
2 + μ2

2)(ρ
2 + μ2

3)

× (ρ2 + μ2
4)(ρ

2 + μ2
5). (8)

Here ωψ is expressed as

ωψ = 2

F
√

Gx

[
c1 R1

√
M0M1 − c2 R2

√
M0M2

+ c2
1c2 R2

√
M1M4 − c1c2

2 R1

√
M2M4

]
, (9)

where R1 and R2 are given in the relation (4). Free parameters of 
the model are fixed by [27] as

L2 = a2 − a1, (10)

and

c1 = ±
√

2(a3 − a1)(a4 − a1)

a5 − a1
. (11)
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We also have

c2 = √
2(a4 − a2)

×
√

(a1 − a3)(a4 − a2)(a2 − a5)(a3 − a5) ± (a2 − a1)(a3 − a4)√
(a1 − a4)(a2 − a4)(a1 − a5)(a2 − a5)(a3 − a5)

,

(12)

and

k = 2(a1 − a3)(a2 − a4)

2(a1 − a3)(a2 − a4) + (a1 − a5)c1c2
= 2k1k̂2

2k1k̂2 + c1c2k3

. (13)

Here we have used k̂i = 1 − ki and,

ki = ai+2 − a1

L2
, (14)

with i = 1, 2, 3. The variable q can be written as

q = 2k1c2

2k1 − 2k1k2 + c1c2k3
. (15)

So, we can see that all parameters can be written in terms of ai
with i = 1, 2, 3, 4, 5.

The Hawking temperatures for the black Saturn are obtained 
by combination of the Hawking temperatures for the black hole 
with the Hawking temperatures for the black ring. These combined 
Hawking temperatures can be expressed as [5],

T = 1

2π L

√
k̂2k̂3

2k̂1

⎛
⎜⎝ (1 + k2)

2

1 + k1k2k̂2k̂3

k3k̂1
c2

⎞
⎟⎠

+ 1

2π L

√
k1k̂3(k1 − k3)

2k2(k2 − k3)

⎛
⎝ (1 + k2)

2

1 − (k1 − k2)c + k1k2k̂1
k3

c2

⎞
⎠ , (16)

where

c = 1

k2

⎛
⎜⎝ε

k1 − k2√
k1k̂2k̂3(k1 − k3)

− 1

⎞
⎟⎠ . (17)

Here ε = ±1, while ε = 0 gives a naked singularity. The entropy 
of the black Saturn, in absence of thermal fluctuations, can also be 
expressed as

S0 = π2L3

(1 + k2)2

√√√√ 2k̂3
1

k̂2k̂3

(
1 + k1k2k̂2k̂3c2

k3k̂1

)

+ π2L3

(1 + k2)2

√
2k2(k2 − k3)3

k1(k1 − k3)k̂3

(
1 − (k1 − k2)c + k1k2k̂3c2

k3

)
.

(18)

This is the entropy of the combination of the black hole and black 
ring. The ADM mass of black Saturn, which can be interpreted as 
enthalpy H = MADM , is given by [5,35,36],

MADM = 3π L2

4k3(1 + k2c)2

(
k3(k̂1 + k2) − 2k2k3(k1 − k2)c

+ k2[k1 − k2k3(k̂2 + k1)]c2
)

. (19)

We will use this expression to study enthalpy and therefore PV
diagram.
3. Corrected thermodynamics

In this section, we will analyze the corrections to the thermo-
dynamics of a black Saturn because of thermal fluctuations. These 
thermal fluctuations will become important as the black Saturn re-
duces in size due to the Hawking radiation. We can now write the 
partition function for this system as

Z =
∫

Dg D A exp(−I), (20)

where I → −i I is the Euclidean action for this system. This parti-
tion function can also be written as [8,9]

Z =
∞∫

0

dE ρ(E)e−βE , (21)

where β is the inverse of the temperature. We can write an ex-
pression for the density of states as

ρ(E) = 1

2π i

c+i∞∫
c−i∞

dβ eS(β), (22)

where

S = βE + ln Z . (23)

The quantum fluctuations in the geometry of space–time, will lead 
to the thermal fluctuations in the thermodynamics of black Saturn. 
Thus, if the S(β) is inverse of the corrected temperature, then we 
can expand it around the equilibrium temperature β0,

S = S0 + 1

2
(β − β0)

2
(

∂2 S(β)

∂β2

)
β=β0

+ · · · . (24)

Neglecting the higher order corrections, we obtain

ρ(E) = eS0

2π i

c+i∞∫
c−i∞

dβ exp

(
1

2
(β − β0)

2
(

∂2 S(β)

∂β2

)
β=β0

)
. (25)

We can write this expression as

ρ(E) = eS0

√
2π

[(
∂2 S(β)

∂β2

)
β=β0

]−1/2

. (26)

Now, we obtain

S = S0 − 1

2
ln

[(
∂2 S(β)

∂β2

)
β=β0

]1/2

. (27)

It may be noted that this second derivative of entropy is actually a 
fluctuation squared of the energy, so we can write [8,9][(

∂2 S(β)

∂β2

)
β=β0

]1/2

= C0T 2 (28)

Hence,

S = S0 − 1

2
ln C0T 2. (29)

Here, S0 is the original entropy of the combination of the black 
hole and the black ring given by the equation (18). Thus, the en-
tropy of both black ring and black hole will get corrections to it 
because of thermal fluctuation. Now, we will introduce a variable α



490 M. Faizal, B. Pourhassan / Physics Letters B 751 (2015) 487–494
to parameterize the effect of thermal fluctuations on the thermo-
dynamics of black Saturn. Thus, we will write the expression for 
the entropy as

S = S0 − α

2
ln C0T 2, (30)

where

C0 = T
∂ S0

∂T
. (31)

We can infer from relation (14) that all thermodynamics quan-
tities depend on a1, a2, a3, a4 and a5. Therefore, we can calculate 
thermodynamics quantities in terms of ai with i = 1, . . . , 5. First of 
all, for simplicity we can fix four of them according to condition 
given by the equation (5), and obtain thermodynamics quantities 
in terms of only one free parameter. Therefore we will consider 
five different cases. Using the equations (16), (18) and (30), we 
can study logarithmic corrected entropy. For the five cases of fixed 
parameters, we can analyze the behavior of entropy in the plots 
of Fig. 1. We fix parameters as a1 = 1, a2 = 5, a3 = 4, a4 = 3 and 
a5 = 2, which satisfy condition (5).

In Fig. 1(a), we vary a1 with the condition a1 ≤ 2, and in 
Fig. 1(e), we vary a5, with the condition 1 ≤ a5 ≤ 3. It is ob-
served that both are in agreement with the condition (5). We can 
see that both solutions are only valid in absence of logarithmic 
correction, so we are not allowed to use fixed parameters as il-
lustrated by Fig. 1(a) and (e). In Fig. 1(b), we vary a2 with the 
condition a2 ≥ 4 and observe that presence of logarithmic correc-
tion fixes a2 = a3. Similar result is obtained by Fig. 1(c). Here we 
vary a3 with the condition a3 ≤ 5, and see that presence of log-
arithmic correction fixes a3 = a2. In Fig. 1(d), we vary a4 with 
the condition 2 ≤ a4 ≤ 4, and observe that it is only possible to 
consider the case of a4 = a5 in presence of logarithmic correc-
tions. Therefore, the logarithmic correction fixes free parameters 
(a1, a2, a3, a4, a5). Thus, we can consider the following example 
(1, 4, 4, 3, 2), (1, 5, 5, 3, 2) or (1, 5, 4, 2, 2). It implies that if we 
fix four parameters, then the last parameter also should be fixed. 
When, all parameters are fixed then, temperature and entropy and 
all thermodynamics quantities are constants while we need them 
as a function of parameters.

So, we will only fix three of these parameters and keep two of 
them as variable. From Fig. 1, we observe that by considering a1
and a5 as variable, we do not obtain a physical result. Therefore, 
we will fix a1 = 1 and a5 = 2, and vary other parameters (accord-
ing to the condition (5)). In the plots of Fig. 2, we plot the entropy 
corrected by the logarithmic term (30), and ordinary entropy (18)
as a function of two ai . In plots of (a), we fix a2 and vary a3 and 
a4. This is done for both α = 0 and α = 1. In plots of (b), we fix 
a3 and vary a2 and a4. This is again done for α = 0 and α = 1. In 
plots of (c), we fix a4 and vary a3 along with a2. Here again we 
consider both the values of α, i.e., α = 0 and α = 1. The allowed 
values of a3 and a4 can be inferred from the plot of Fig. 2 (a). This 
is done by considering those values that satisfy the condition (5). 
Thus, we consider a3 ≥ 2 and a4 ≥ a3, and observe that there is no 
entropy in this region. The same fact can be obtained by using plot 
of Fig. 2(c). This is done by fixing a4 and varying a3 and a2 accord-
ing to the condition (5). Here we again obtain nothing. Therefore 
the only choice we have is to selected values like in Fig. 2(b). How-
ever, for these values the entropy is negative.

If we obtain the third solution, we can relate all parameters to 
each other and rewrite them in terms of only one free parame-
ter as a variable. Therefore all of them are considered as variables. 
Even though there are several choices, we will consider the follow-
ing choices,

a2 = 5a3
a3 = 4a4

a4 = 3a5

a5 = 2a2
1. (32)

Therefore the only free parameter of model is a1. Using ansatz (32)
in the corrected entropy (30) gives us the result which is illus-
trated by Fig. 3. As was expected, the parameters for black hole 
(a1 and hence other parameters) get restricted in presence of log-
arithmic corrections (α = 1). The values we selected can be used 
to obtain, a1 ≥ 4 and a5 ≥ 32, a4 ≥ 66, a3 ≥ 264 and a2 ≥ 1320. On 
the other hand, it is also possible to consider

0.1 < a1 < 0.5,

0.5 < a1 < 0.9. (33)

There is a singularity at a1 = 0.5. It is possible to use specific heat 
for choosing one of the above mentioned solutions. It is possible 
to choose other possibilities and obtain similar results.

It is possible to demonstrate that

∂ S

∂a1
= ∂ S0

∂a1
− α

2
(1 + 1

T
)
∂T

∂a1
. (34)

Thus, we can write the internal energy as,

E =
∫

T dS = E0 − α

2
T − α

4
T 2, (35)

where

E0 =
∫

T dS0. (36)

So we can study behavior of �E = E − E0 in terms of T , and this 
in turn can be expressed in terms of a1 (see Fig. 4). There are 
two special choices of a1, where the logarithmic correction does
not contribute to the result. The first one being a1 = 0.5, and 
this corresponds to a singularity in the entropy (see Fig. 3), and 
a1 ≈ 20 and this is not in appropriate domain of 0.1 < a1 < 0.5
and 0.5 < a1 < 0.9. This will be demonstrated to be a requirement 
of stability. So, we can infer that, in the case of 0.1 < a1 < 0.5
corrected energy is bigger than ordinary energy (E > E0). On the 
other hand, for the case of a1 > 0.5, we have E < E0.

Then, using the relation (19) and,

H = E + P V , (37)

we can investigate P V diagram. We can also analyze the behavior 
of Gibbs free energy because

G = F + P V , (38)

where

F = E − T S, (39)

is Helmholtz free energy. It is easy to find that,

F = F0 − α

2
T (1 − ln C0T 2) − α

4
T 2, (40)

where

F0 = E0 − T S0. (41)

So, we can study �F = F − F0 in terms of a1 (see Fig. 5). Fig. 5
shows that the Helmholtz free energy exists only for selected val-
ues of a1 as,

0.2 ≤ a1 < 0.5.

0.65 < a1 < 1. (42)
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Fig. 1. Entropy in terms of ai , solid blue lines denote the case of α = 0 (ordinary entropy) and dashed red lines denote the case of α = 1 (logarithmic corrected entropy).
(a) a2 = 5, a3 = 4, a4 = 3 and a5 = 2, (b) a1 = 1, a3 = 4, a4 = 3 and a5 = 2, (c) a1 = 1, a2 = 5, a4 = 3 and a5 = 2, (d) a1 = 1, a2 = 5, a3 = 4 and a5 = 2, (e) a1 = 1, a2 = 5, 
a3 = 4 and a4 = 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
This is more restricted than previous result. It is clear that there 
are different values of a1, where F = F0, such that the effects 
from the logarithmic corrections are canceled by effect of a1. In 
this case, we have a1 = 0.2, 0.275, 0.5, 0.78. It may be noted that 
bounds on the parameters of a black Saturn have been obtained 
from the existence of Helmholtz free energy. We will demonstrate 
this to be related to the stability condition, i.e., it is related to the 
positivity of the heat capacity. Hence, the black Saturns are sta-
ble only for certain values of parameters. Furthermore, we would 
like to clarify that it has been demonstrated that black Saturns are 
generally unstable. This is because higher entropy solution with 
the same charges always exists. However, it is possible for black 
Saturns to be metastable. We will use the metastability of black 
Saturns to find bounds on the parameters. So, basically we analyze
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Fig. 2. Entropy in terms of a2, a3 and a4 with a1 = 1 and a5 = 2. Left plots denote the case of α = 0 (ordinary entropy) and right plots denote the case of α = 1 (logarithmic 
corrected entropy). (a) a2 = 5, (b) a3 = 3, (c) a4 = 4.
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Fig. 3. Entropy in terms of a1, with α = 0 (solid blue) and α = 1 (dotted red). (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 4. Change of internal energy (due to logarithmic correction) in terms of a1.

the bounds from metastability of black Saturns, and also the effect 
of thermal fluctuations on such bounds.

4. Phase transition

In this section, we will analyze the phase transition in the black 
Saturn. Using the sign of specific heat at constant volume,

C = T
∂ S

∂T
, (43)

one can investigate phase transition of black hole. We will analyze 
the instability in presence of logarithmic corrections. Using the re-
lation (34), above equation can be written as

C = C0 − α

2
(1 + T ). (44)

It is easy to check that change of specific heat due to logarithmic 
correction is small as compared to 107. Therefore, we can observe 
Fig. 5. Change of Helmholtz free energy (due to logarithmic correction) in terms 
of a1.

Fig. 6. Specific heat in terms of a1.

that logarithmic corrections do not effect the phase transition and 
thermodynamics stability of black Saturn. As these logarithmic cor-
rections are generated from the thermal fluctuations, which in turn 
are generated from quantum corrections, we can infer that the 
black Saturn remains stable even in presence of quantum correc-
tions. Thus, the black Saturn continues to remain stable as it get 
smaller due to the Hawking radiation. In Fig. 6, we have obtained 
phase transition points, which are a1 = 0.5, 0.65, 0.92. Thus, there 
are two choices for black Saturn parameter

0.2 ≤ a1 ≤ 0.5,

0.65 ≤ a1 ≤ 0.9. (45)

The black Saturn has thermodynamics stability for both these 
choices. There are two singular points, a1 = 0.5 and a1 ≈ 0.92. 
Therefore, we can find two intervals for possible values of a1. This 
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is given by overlap of the regions given by (33) and (42). Now, the 
equation (45) can be written as

0.2 ≤ a1 < 0.9, a1 	= 0.5. (46)

However there is a condition given by (5). This condition uses (32)
to infer that a5 = 2a2

1 and a5 ≥ a1. Both these conditions are satis-
fied if

0.6 ≤ a1 < 0.9. (47)

Thus, we have been able to analyze the effect of thermal correc-
tions on the stability of black Saturn.

5. Conclusions

In this paper, we studied thermodynamics quantities of a black 
Saturn. We were able to analyze the effect of thermal fluctua-
tions to the thermodynamics of black Saturn. The leading order 
correction terms to the entropy of black Saturn were the stan-
dard logarithmic corrections. It was not possible to fix all the 
free parameters for the black Saturn. However, we were able to 
use the stability condition to obtain a bound for these free pa-
rameters. The bound we obtain for these parameters could be 
expressed as 0.6 ≤ a1 < 0.9, 0.72 ≤ a5 < 1.62, 2.16 ≤ a4 < 4.86, 
8.64 ≤ a3 < 19.44, 43.2 ≤ a2 < 97.2. We also analyzed the phase 
transition for the black Saturn. We were able to explicitly calculate 
the points where phase transition can take place. It was demon-
strated that the thermal fluctuations do not effect stability of the 
black Saturn, and so their effect can be neglected when analyzing 
the phase transition in the black Saturn. It will be interesting to ex-
plicitly calculate the partition function for density of states of the 
black Saturn. This can then be used to calculate the Helmholtz free 
energy and entropy for the black Saturn. Then, we can compare the 
results obtained to the analysis done in this paper. The thermody-
namics of a charged dilatonic black Saturn has also been studied 
[34]. In this analysis a charged black ring along with a black Sat-
urn has been studied using the Einstein–Maxwell-dilaton theory. 
This analysis was performed in five dimensions. This was done 
by embedding a neutral black ring and black Saturn solutions in 
six dimensions. They were then boosted with respect to the time 
coordinate and the sixth dimension. Then, the Kaluza–Klein reduc-
tion was used to obtain the charged solutions. The phase diagram 
was also studied for this system. It would be interesting to analyze 
the effect of thermal fluctuations on the thermodynamics of this 
charged dilatonic black Saturn. The entropy of this charged dila-
tonic black Saturn is also expected to get logarithmic corrections 
due to these thermal fluctuations. We can then analyze the effect 
of such a corrected value of entropy on the stability of a charged 
dilatonic black Saturn.
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