59 research outputs found

    Spacetime Entanglement with f(R) Gravity

    Get PDF
    We study the entanglement entropy of a general region in a theory of induced gravity using holographic calculations. In particular we use holographic entanglement entropy prescription of Ryu-Takayanagi in the context of the Randall-Sundrum 2 model while considering general f(R) gravity in the bulk. Showing the leading term is given by the usual Bekenstein-Hawking formula, we confirm the conjecture by Bianchi and Myers for this theory. Moreover, we calculate the first subleading term to entanglement entropy and show they agree with the Wald entropy up to extrinsic curvature terms.Comment: 16 pages, 2 figure

    Non-equilibrium steady state in the hydro regime

    Full text link
    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.Comment: 1+17 page

    Geometric RG Flow

    Full text link
    We define geometric RG flow equations that specify the scale dependence of the renormalized effective action Gamma[g] and the geometric entanglement entropy S[x] of a QFT, considered as functionals of the background metric g and the shape x of the entanglement surface. We show that for QFTs with AdS duals, the respective flow equations are described by Ricci flow and mean curvature flow. For holographic theories, the diffusion rate of the RG flow is much larger, by a factor R_{AdS}^2/\ell_s^2, than the RG resolution length scale. To derive our results. we employ the Hamilton-Jacobi equations that dictate the dependence of the total bulk action and the minimal surface area on the geometric QFT boundary data.Comment: 20 pages, 3 figure

    A Holographic Quantum Hall Ferromagnet

    Get PDF
    A detailed numerical study of a recent proposal for exotic states of the D3-probe D5 brane system with charge density and an external magnetic field is presented. The state has a large number of coincident D5 branes blowing up to a D7 brane in the presence of the worldvolume electric and magnetic fields which are necessary to construct the holographic state. Numerical solutions have shown that these states can compete with the the previously known chiral symmetry breaking and maximally symmetric phases of the D3-D5 system. Moreover, at integer filling fractions, they are incompressible with integer quantized Hall conductivities. In the dual superconformal defect field theory, these solutions correspond to states which break the chiral and global flavor symmetries spontaneously. The region of the temperature-density plane where the D7 brane has lower energy than the other known D5 brane solutions is identified. A hypothesis for the structure of states with filling fraction and Hall conductivity greater than one is made and tested by numerical computation. A parallel with the quantum Hall ferromagnetism or magnetic catalysis phenomenon which is observed in graphene is drawn. As well as demonstrating that the phenomenon can exist in a strongly coupled system, this work makes a number of predictions of symmetry breaking patterns and phase transitions for such systems.Comment: 38 pages, 7 figures, references adde

    Charged Lifshitz Black Holes

    Full text link
    We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary zz and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical potential. We also consider the effect of Maxwell charge on the effective potential between objects in the dual theory.Comment: Latex, 28 pages, 14 figures, some references adde

    Thermodynamic Instability of Black Holes of Third Order Lovelock Gravity

    Full text link
    In this paper, we compute the mass and the temperature of the uncharged black holes of third order Lovelock gravity and compute the entropy through the use of first law of thermodynamics. We perform a stability analysis by studying the curves of temperature versus the mass parameter, and find that there exists an intermediate thermodynamically unstable phase for black holes with hyperbolic horizon. The existence of this unstable phase for the uncharged topological black holes of third order Lovelock gravity does not occur in the lower order Lovelock gravity. We also perform a stability analysis for a spherical, 7-dimensional black hole of Lovelock gravity and find that while these kinds of black holes for small values of Lovelock coefficients have an intermediate unstable phase, they are stable for large values of Lovelock coefficients. We also find that there exists an intermediate unstable phase for these black holes in higher dimensions. This stability analysis shows that the thermodynamic stability of black holes with curved horizons is not a robust feature of all the generalized theories of gravity.Comment: 16 pages, 8 figure
    • …
    corecore