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1 Introduction

Dividing a quantum system into two parts, entanglement entropy (EE) is a measure of

quantum correlations between the two subsystems. EE has appeared in different areas such

as condensed matter theory [1], quantum information theory [2, 3] and black hole physics [4–

6]. In QFT, the EE between a spatial region A and its complement, at fixed time, is given

by the usual von-Neumann entropy: S = −tr[ρA log ρA]. Whereas the reduced density

matrix ρA is obtained by tracing out the degrees of freedom in the complementary region

and describes the remaining degrees of freedom in region A. Note that, because of the

appearance of divergences in continuum limit, one needs to introduce a UV regulator to

make sense of this calculation.

More recently, EE has been widely studied in the AdS/CFT, after an elegant conjecture

by Ryu and Takayanagi [7, 8] which relates EE in the boundary to the classical geometry

in the bulk through holography. According to this prescription, the EE associated with

an entangling surface Σ in the CFT, i.e., on the conformal boundary of an AdS bulk, is

determined by evaluating A/4G on an extremal surface σ in the bulk, which extends to

the AdS boundary to meet Σ. Here the UV boundary cut-off corresponds to introducing

a regulator surface at some finite large r, as shown in figure 1. While the conjecture has

passed lots of consistency tests [7, 9–11], e.g., reproduces the same results for 2-dimensional

CFT and for the thermal ensemble as well as connection to central charges of CFT, it has

been proved recently by Lewkowycz and Maldacena [12].

In a related framework, Randall and Sundrum showed that the standard four-

dimensional gravity will arise at long distances on a brane embedded in a warped five-

dimensional background [13, 14]. One may construct such a model in arbitrary dimension

by taking two copies of (d + 1)-dimensional AdS spacetime, gluing them together along a

cut-off surface at some large radius while inserting (d− 1)-brane at this junction.

Here we are motivated with the recent conjecture by Bianchi and Myers proposing that

in quantum gravity, EE of a general surface with smooth geometry in a smooth background
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Figure 1. Ryu-Takayanagi surface σ associated to the entangling surface Σ on the AdS boundary.

is finite and the leading term is the usual Bekenstein-Hawking formula. Therefore, in this

letter, which is a followup for the previous work with Myers and Smolkin [15], we first

briefly introduce the Randall-Sundrum 2 (RS2) model in section 2. In section 3, we use

the RS2 model to derive induced gravity on a (d − 1)-brane which is embedded in the

(d+ 1)-dimensional bulk with f(R) gravity theory. Then in section 4, we use holographic

entanglement entropy to study EE of a general surface on this brane. Finally, we summarize

the results in section 5.

2 Warped spacetime

If string theory is expected to be the UV completion of general relativity, then the ex-

istence of extra dimensions is required in order to cure quantum anomalies from stringy

gauge symmetries [16]. Although the size and shape of the extra dimensions can not be

predicted by string theory, they need to be compactified and sufficiently small so that 4-

dimensional spacetime is recovered at low energies. One way to do this is through warped

compactification, as proposed by Randall and Sundrum [14]. Here, we focus on a version

known as the RS2 model.1 In this set-up a single 3-brane is embedded in a five dimensional

bulk given by

Ibulk =
1

16πG5

∫
d4x

∫
dr
√
−g
(

12

L2
+R

)
, (2.1)

where L is the scale of cosmological constant as well as the curvature radius of AdS5

spacetime and r is the fifth extra dimension in a bulk. Therefore, one can produce a 4D

effective theory on 3-brane from 5D gravitational action in the bulk. According to UV/IR

duality, this brane is usually called the UV brane, since in the bulk we are working in the

IR regime of gravity theory by considering the region at smaller radius. In fact, in addition

to the bulk action there exists the 4D action of the brane which to leading order is the

brane tension, looking like the cosmological term contribution, and any other matter fields

living on the brane. Indeed, one can think of the 4D metric as it is multiplied by a warp

factor which is an exponential function of the fifth coordinate, i.e., locally we have the AdS

geometry as

ds2 = e−2r/Lηµνdx
µdxν + dr2 (2.2)

1There is also the RS1 model [13] in which there exists another brane in the interior of the bulk, i.e., the

IR brane, located at a finite distance from the UV brane. Therefore, one can think of the RS2 as a limit of

the RS1 where the IR brane has been taken to infinity.
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AdS 5
AdS 5

Figure 2. Two copies of AdS5 spaces have been glued together at some finite radial direction and

a 3-brane has been inserted at the junction.

where L is assumed to be large compared to the 5D Planck scale, indicating that the bulk

is smoothly curved. Therefore we can trust that metric (2.2), which is the solution to the

5D Einstein equation of the total action, i.e., bulk plus brane, is a valid solution provided

the tension of the brane is set to be Tbrane = 3/4πLG5.

The most important outcome of the model is the 4D effective Newton’s constant in

terms of the bulk parameters as

GN =
2G5

L
(2.3)

which is obtained from 5D action by integrating out the extra dimension. Thus in the RS2

model, gravity is localized in the vicinity of the brane which contains 4D UV theory with

finite effective coupling. One can easily extend this construction to arbitrary dimensions

to describe a d-dimensional UV theory on the brane from a d+ 1-dimensional AdS bulk.

In the rest of this letter, we use the RS2 construction as a holographic framework to

study the entanglement entropy of a general region in induced gravity, i.e., the 4D gravity

theory on the brane. To do so, we assume two copies of AdS spacetime, cut each of them

at some finite radial distance, glue them together at the cut and then insert a brane at

this junction — see figure 2. Therefore according to the RS2 mechanism, we have localized

gravity in the vicinity of the brane and induced gravity on the brane with finite coupling.

On the other hand, due to AdS/CFT correspondence, we have two copies of strongly

coupled CFT living on the brane coupled to induced metric of the brane. Also cutting the

AdS geometry at some finite radius corresponds to introducing a finite UV regulator in

the dual field theory. Since this cutting surface is also the location of the brane, in order

to deal with one length scale on the brane, without loss of generality, we choose the AdS

scale in the bulk to be equal to the UV cut-off on the boundary theory where we denote

both with δ. The fact that the QFT cut-off matches the AdS curvature scale indicates the

bulk geometry is highly curved if δ is small.
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3 f(R) gravity in the bulk

We will consider extended theories of gravity in the bulk as a generalization of the usual

Einstein-Hilbert action (2.1). In particular, we study the RS2 model with f(R) gravity

where f is an arbitrary function of the Ricci scalar [17], as an interesting toy-model. Thus

the action for the AdSd+1 bulk becomes

Ibulk =
1

16πGd+1

∫
ddxdρ

√
−G
[
d(d− 1)

L2
+ f(R(G))

]
+ Isurf (3.1)

where Gd+1 is the gravitational constant in the bulk, L is the scale of cosmological constant

andR is the curvature scalar in the bulk. The dimensionless coordinate ρ is the extra radial

direction in the bulk and xi are the coordinates along the brane located at ρ = ρc whereas

ρ = 0 would be the boundary of AdSd+1.2 Note that the AdSd+1 geometry again has the

curvature radius δ matching the cut-off in the boundary theory. However, we will see that

AdSd+1 scale is no longer the cosmological scale, i.e., δ 6= L. To have a well-defined action

the proper surface term is of the form [18]

Isurf =
1

8πGd+1

∫
ddx
√
−g̃K f ′(R)|ρ=ρc , (3.2)

where K is the trace of second fundamental form of the metric on the brane and prime

denote derivative with respect to R.

We use Fefferman-Graham gauge [19] for the metric in the bulk which is

ds2 = Gµνdx
µdxν =

δ2

4

dρ2

ρ2
+

1

ρ
gij(x, ρ)dxidxj , (3.3)

where δ, the curvature radius of AdSd+1, is related to the cosmological constant L and the

gravitational couplings implicit in f(R) through the equation of motion in the bulk, i.e.,

f ′(R)Rµν +

(
Gµν∇σ∇σ −∇µ∇ν

)
f ′(R)− Gµν

2

(
f(R) +

d(d− 1)

L2

)
= 0 . (3.4)

That is, if one inserts the metric (3.3) with gij = ηij , i.e., pure AdS space, into (3.4) one

obtains
1

L2
= − 1

d(d− 1)δ2

[
2df ′(R0) + δ2f(R0)

]
, (3.5)

where R0 is the curvature of AdSd+1 spacetime, i.e.,

R0 = −d(d+ 1)

δ2
. (3.6)

One can obtain the induced gravity action on the brane by integrating out the extra

radial dimension of the bulk action (3.1). To do so, we use a derivative expansion for the

metric gij about the position of the brane of the form

gij(x, ρ) =
(0)
g ij + ρ

(1)
g ij + ρ2(2)

g ij + · · · , (3.7)

2The dimensionless coordinate ρ is related to dimensionfull coordinate r in previous section as ρ = e2r/δ.
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where
(0)
g ij is the metric of the AdS boundary at ρ = 0 and

(1)
g ij = − δ2

d− 2

(
Rij [

(0)
g ]−

(0)
g ij

2(d− 1)
R[

(0)
g ]

)
, (3.8)

(2)
gij = δ4

(
k1CmnklC

mnkl
(0)
g ij + k2CiklmC

klm
j

+
1

d− 4

[
1

8(d− 1)
∇i∇jR−

1

4(d− 2)
�Rij +

1

8(d− 1)(d− 2)
�R

(0)
g ij

− 1

2(d− 2)
RklRikjl +

d− 4

2(d− 2)2
R k
i Rjk +

1

(d− 1)(d− 2)2
RRij

+
1

4(d− 2)2
RklRkl

(0)
g ij −

3d

16(d− 1)2(d− 2)2
R2

(0)
g ij

])
, (3.9)

with Rij and Cmnkl being the Ricci and Weyl tensors associated with the boundary metric
(0)
g ij , respectively [20]. The two constants k1 and k2 depend on the type of gravity theory

in the bulk. By solving the equation of motion (3.4) for f(R) in the bulk, one explicitly

finds k1, k2 = 0. The latter are most easily determined if one picks a fixed geometry on the

boundary for
(0)
g ij and then plugs the metric (3.3) into (3.4) while using the expansion (3.7).

Using the metric expansion (3.7) one can perform a derivative expansion for the cur-

vature scalar in the bulk; it is a matter of calculation to find3

R = R0 + · · · , (3.10)

since we are just interested in the terms up to curvature squared, we don’t really need to

specify ellipsis which are of O(∂6) and higher. Indeed, as it is manifestly shown in [15],

the only curvature squared term in the expansion (3.10) has a coefficient depending on the

constants k1 and k2. However, this term is absent in the present case with f(R) gravity

for which k1 and k2 are both zero.

According to scaling symmetry of AdS the position of the brane could be set to ρ = ρc =

1 without loss of generality, therefore we need to justify that the derivative expansion (3.7)

can be reasonably truncated for finite ρ. It could be realized from (3.9) that truncation

can be consistently achieved by demanding that the boundary metric
(0)
g ij is weakly curved

on the scale of AdS curvature δ. More precisely, we require

δ2Rijkl[
(0)
g ]� 1 . (3.11)

and similarly for covariant derivatives of the curvatures. Note that to make sense of this

inequality, we are assuming that the expressions are evaluated in an orthonormal frame.

Although
(0)
g ij is not the metric on the brane, the constraint (3.11) is sufficient for the brane

to be also smoothly curved. It is evident from the expression for the induced metric on

the brane

g̃ ij = Gij |ρ=1 =
(0)
g ij +

(1)
g ij +

(2)
g ij + · · · , (3.12)

that the difference between two metrics is small, i.e., g̃ ij−
(0)
g ij '

(1)
g ij � 1 when (3.11) holds.

3The details of calculation could be found in [15].
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In order to calculate the induced gravity action on the brane which is given by

Iind = 2Ibulk + Ibrane , (3.13)

where the factor of two for the bulk gravitational action is due to the fact that we have two

copies of AdS spaces and Ibrane accounts for any contribution from matter fields localized

on the brane as well as brane tension. However, here for simplicity we focus only on the

latter, i.e.,

Ibrane = −Tbrane

∫
ddx
√
− g̃ . (3.14)

We also need to find the derivative expansions for the extrinsic curvature Kij at the

brane where the outward-pointing unit normal vector is given by nµ = −
√
Gρρδ

ρ
µ. There-

fore, one can easily derive

Kij = ∇inj |ρ=1 = −ρ
δ

∂Gij
∂ρ
|ρ=1 =

1

δ

(
g̃ ij −

∞∑
n=1

n
(n)
g ij

)
, (3.15)

which up to curvature squared terms yields to

K =
1

δ

[
d+

δ2

2(d− 1)
R+

δ4

2(d− 1)(d− 2)2

(
RijR

ij − d

4(d− 1)
R2

)]
+O(δ6) . (3.16)

Note that curvatures in the above expression are constructed from the brane metric g̃ ij .

Finally putting together (3.13), (3.1) and (3.2) while using the derivative expansions

for the bulk and brane metrics and curvatures as well as (3.5) and integrating over the

radial direction ρ we get

Iind =

∫
ddx
√
− g̃

[
R

16πGN
+
κ1

2π

(
RijR

ij − d

4(d− 1)
R2

)
+ · · ·

]
. (3.17)

The ellipsis in (3.17) are of order O(∂6) and higher and

1

GN
=

2δ

d− 2

f ′(R0)

Gd+1
, κ1 =

δ3

4(d− 2)2(d− 4)

f ′(R0)

Gd+1
, (3.18)

with R0 is given by (3.6) and we have tuned the brane tension to be

Tbrane =
d− 1

4πδGd+1
f ′(R0) . (3.19)

Note that all the curvatures in expression (3.17) are constructed from the brane metric

g̃ ij . So far, we have found the effective Newton constant of the brane GN in terms of the

bulk gravitational constant Gd+1. Moreover, we have an additional parameter κ1 on the

brane which is expressed in terms of bulk gravity parameters. It is worth to mention that

the expression (3.17) for induced action has the same form as previously obtained in [15]

for Einstein and Gauss-Bonnet gravity. However, the effective Newton constant GN and

the coupling κ1 have different definitions in terms of the bulk gravitational couplings.
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4 Entanglement entropy

Our goal is to calculate the leading term and the first subleading term of the entanglement

entropy of a general surface with a smooth geometry in a weakly curved background.

Therefore, we assume a sufficiently large surface with generic geometry on the RS brane

which is weakly curved due to the constraint (3.11). However, in order to calculate the

entanglement entropy of such a surface, instead of going through QFT calculations, we

are following holographic approach. That is, as shown in figure 1, we extend the general

surface Σ̃ on the brane into the bulk and then for this bulk surface σ, we apply holographic

entanglement entropy formula introduced by Ryu and Takayanagi [7, 8], i.e.,

Sσ ≡ min
A(σ)

4Gd+1
. (4.1)

However, with f(R) gravity, we need to find the appropriate entropy functional for the bulk

surface σ and then extremise the functional to find holographic entanglement entropy [9].

A natural guess with a general covariant Lagrangian L(g,R,∇R, · · · ) would be the Wald

entropy formula [21–23] as following

SWald = −2π

∫
hypersurface

dd−1X
√
h

∂L
∂Rijkl

ε̂ij ε̂kl , (4.2)

where ε̂ij is the volume form in the two dimensional transverse space to the hypersurface.

However, this is known not to be correct in general [9]. In general, one must add terms

involving the second fundamental forms of the boundary of σ. However there is evidence

such terms do not occur for f(R) gravity, e.g., using a novel method called squashed cone,

it has been shown in [24] that for the bulk action of the R2 form, which is specific form

of f(R), no extrinsic curvature appears in the entanglement entropy. Also performing a

field redefinition, one can show that f(R) gravity can be transformed into a pure Einstein

gravity minimally coupled to matter [25]. For the latter, the entropy functional is simply

A/4G and transforming back yields no K terms. Therefore, we assume in order to obtain

the entropy functional associated with the bulk surface σ for f(R) gravity in the bulk, it

is enough to use the Wald entropy formula (4.2). This yields

Sσ =
1

2Gd+1

∫
Σ̃
dd−2y

∫ ∞
1

dρ
√
hf ′(R) , (4.3)

where yi are the coordinates along the entangling surface Σ̃ and hαβ is the induced metric

on the codimension-2 surface σ with its components are given as a Taylor series about

ρ = 0 by

hρρ =
δ2

4ρ2

(
1+

(1)

h ρρρ+ · · ·
)
, hab =

1

ρ

(
(0)

hab+
(1)

h abρ+ · · ·
)
. (4.4)

In the above expression
(0)

h ab is the induced metric of the entangling surface Σ on the AdS

boundary and the coefficients in the expansion are given by [26]

(1)

h ρρ =
δ2

(d− 2)2
KiKj

(0)
g ij ,

(1)

h ab =
(1)
g ab −

δ2

d− 2
KiKj

ab

(0)
g ij , (4.5)

– 7 –



J
H
E
P
0
6
(
2
0
1
4
)
0
0
4

where Ki =
(0)

h abKi
ab is the trace of the second fundamental form of Σ. It is worth to

clarify that the entangling surface is a codimension-2 with a pair of orthonormal vectors

nIj (I = 0, 1) and associated extrinsic curvatures KI
ab = ∇anIb . Contracting with a normal

vector gives Ki
ab = niJK

J
ab, that’s why the extrinsic curvatures here and in the following

always carry a coordinate index i.

Moreover, since we are using the expansion (4.4) in the vicinity of the brane at ρ = 1,

then we need to justify that it converges fast enough to be applicable for finite ρ. This re-

quires not only the background geometry is weakly curved as indicated in constraint (3.11)

but also the entangling surface Σ̃ is smooth. Recall that the surface Σ̃ is the intersection

of the bulk surface σ and the brane at ρ = 1 with its metric given by

h̃ab = hab|ρ=1 =
(0)

h ab +
(1)

h ab + · · · . (4.6)

The derivative expansion (4.6) truncates by imposing that the characteristic scale of the

extrinsic curvatures is small compared to the AdS scale, i.e.,

δ Ki
ab � 1 , (4.7)

whereas the same constraint should be held for covariant derivatives of the extrinsic cur-

vatures which might appear in higher orders. Again, we are assuming that the expressions

are evaluated in an orthonormal frame.

Now, in order to evaluate the entanglement entropy associated with Σ̃, we plug (4.4)

into (4.3), applying Taylor expansion for f(R) and integrating over the radial direction ρ

from the location of the brane to infinity we get

SEE =
δ

2(d− 2)Gd+1

∫
dd−2y

√
h̃f ′(R0)

[
1 +

d− 2

2(d− 4)

(1)

h ρρ +
1

d− 4

(0)

h
ab

(1)

h ab + · · ·
]
,

(4.8)

where we have used √
(0)

h =
√
h̃

(
1− 1

2

(0)

h
ab

(1)

h ab + · · ·
)
. (4.9)

Note that there is no f ′′ term in (4.8), since curvature squared term is absent in the

derivative expansion (3.10).

Finally if we use (4.5) along with the expressions in (3.18) for the effective Newton

constant GN and parameter κ1 we can rewrite (4.8) as following

SEE =
A(Σ̃)

4GN
+ κ1

∫
Σ̃
dd−2y

√
h̃

(
2Rij g̃⊥ij −

d

d− 1
R−KiKi

)
+O(∂4) . (4.10)

It is clear that the leading term is just the area law as it has been already conjectured

in [27]. Again one should note that the expression (4.10) for entanglement entropy has the

same form as previously obtained in [15] with Einstein and Gauss-Bonnet gravity in the

bulk. The only distinction is that the effective Newton constant GN and the coupling κ1

are defined differently in terms of bulk parameters.
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Moreover, the first subleading term can also teach us an interesting lesson: let’s evalu-

ate the Wald entropy associated to the entangling surface Σ̃ by directly applying the Wald

formula (4.2) for this surface which is a codimension-2 hypersurface on the brane with

induced action (3.17). Doing so, one obtains

S
Σ̃

=
A(Σ̃)

4GN
+ κ1

∫
Σ̃
dd−2y

√
h̃

(
2Rij g̃⊥ij −

d

d− 1
R

)
+O(∂4) , (4.11)

where we have used the following identities:

ε̂ikε̂
k
j = −g̃⊥ij , ε̂ij ε̂

ij = −2 . (4.12)

Now comparing (4.10) with (4.11), it is evident that the entanglement entropy for a general

surface agrees to the Wald entropy up to the extrinsic curvature terms. In fact, if the

entangling surface is a Killing horizon, for which extrinsic curvatures are vanishing, then

both entropies coincide. However, for a general entangling surface, the Wald entropy does

not give the whole entanglement entropy for the surface; there are some contributions to

the entanglement entropy from non vanishing extrinsic curvature terms which they do not

appear in the Wald entropy. Indeed, the fact that the entanglement entropy cannot be

completely extracted from the Wald formula has been recently studied in [15, 24, 28–30].

5 Discussion

In this letter we constructed the RS2 model by taking two copies of AdS spacetime and

gluing them together along a cut-off surface at some large radius and inserting a brane

at this junction. Therefore, the standard gravity will arise at long distances on the brane

as induced gravity: using a FG expansion around the brane and integrating out the extra

radial direction, we derived the induced action (3.14) on the brane embedded in the bulk

described by the classical action (3.1) known as f(R) gravity. As a result, we obtained

the the effective Newton constant GN and a new coupling κ1 on the brane in terms of

the bulk parameters in equation (3.18). However, since the brane is located at some

finite radial direction, to make sense of the derivative expansion in our calculations, we

demanded background geometry is weakly curved compared to the AdS scale by imposing

constraint (3.11).

To calculate the entanglement entropy associated with a general surface Σ̃ on the

brane, we used the RT holographic prescription (4.1) in the context of the RS2 model. In

particular, we argued that the entropy functional (4.3) associated to the bulk surface σ, is

the one we need to extremise in the RT formula (4.1) for f(R) gravity in the bulk. Note

that the holographic surface σ is an extension of the surface Σ̃ into the bulk. Therefore,

in order to obtain the EE of Σ̃, we need to integrate over the extra holographic direction.

Again, we used derivative expansion to integrate out the radial coordinate and to ensure the

convergence of the expansion, we demanded not only a smooth geometry for the ambient

metric but also for the entangling surface. In other word, along with a constraint (3.11)

for the intrinsic curvature of the boundary metric, we imposed constraint (4.7) for the

extrinsic curvature of the entangling surface on the boundary.
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Carrying all the calculations, we finally obtained expression (4.10) for a general entan-

gling surface indicating that EE of any region surrounded by a smooth entangling surface

is finite and the leading contribution is given precisely by the Bekenstein-Hawking area

law [31–34]. Hence this model confirmed a conjecture by Bianchi and Myers [27]. We also

calculated the first leading corrections to the area law and found that EE coincides with

the Wald entropy if the entangling surface is a Killing horizon but for a general surface

in addition to the Wald entropy, there are terms dependent on the extrinsic curvature of

the entangling surface. It is easy to see that in the special case where f(R) = R, which

corresponds to have an Einstein gravity in the bulk, we reproduce all the results previously

obtained in [15]. Furthermore, we get the same form of R2 term in the action and R−K2

term in the EE as we previously obtained in [15], however, with different gravity theory in

the bulk. In fact, the type of theory in the bulk manifests itself just in the effective Newton

constant GN and the coupling κ1 which are expressed in terms of bulk parameters.
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