450 research outputs found

    Evaluating true BCI communication rate through mutual information and language models.

    Get PDF
    Brain-computer interface (BCI) systems are a promising means for restoring communication to patients suffering from "locked-in" syndrome. Research to improve system performance primarily focuses on means to overcome the low signal to noise ratio of electroencephalogric (EEG) recordings. However, the literature and methods are difficult to compare due to the array of evaluation metrics and assumptions underlying them, including that: 1) all characters are equally probable, 2) character selection is memoryless, and 3) errors occur completely at random. The standardization of evaluation metrics that more accurately reflect the amount of information contained in BCI language output is critical to make progress. We present a mutual information-based metric that incorporates prior information and a model of systematic errors. The parameters of a system used in one study were re-optimized, showing that the metric used in optimization significantly affects the parameter values chosen and the resulting system performance. The results of 11 BCI communication studies were then evaluated using different metrics, including those previously used in BCI literature and the newly advocated metric. Six studies' results varied based on the metric used for evaluation and the proposed metric produced results that differed from those originally published in two of the studies. Standardizing metrics to accurately reflect the rate of information transmission is critical to properly evaluate and compare BCI communication systems and advance the field in an unbiased manner

    Movement-Modulation of Local Power and Phase Amplitude Coupling in Bilateral Globus Pallidus Interna in Parkinson Disease

    Get PDF
    There is converging evidence that bilateral basal ganglia motor networks jointly support normal movement behaviors including unilateral movements. The extent and manner in which these networks interact during lateralized movement remains unclear. In this study, simultaneously recorded bilateral Globus Pallidus interna (GPi) local field potentials (LFP) were examined from 19 subjects with idiopathic Parkinson disease (PD), while undergoing awake deep brain stimulation (DBS) implantation. Recordings were carried out during two behavioral states; rest and cued left hand movement (finger tapping). The state-dependent effects on α- β oscillatory power and β phase-encoded phase amplitude coupling (PAC), including symmetrical and assymetrical changes between hemispheres, were identified. Unilateral hand movement resulted in symmetrical oscillatory power suppression within bilateral GPi at α (8–12 Hz) and high β (21–35 Hz) and increase in power of high frequency oscillations (HFO, 200–300 Hz) frequency bands. Asymmetrical attenuation was also observed at both low β (13–20 Hz) and low γ (40–80 Hz) bands within the contralateral GPi (P = 0.009). In addition, unilateral movement effects on PAC were confined to the contralateral GPi with attenuation of both low β-low γ and β-HFO PAC (P < 0.05). Further analysis showed that the lateralized attenuation of low β and low γ power did not correlate with low β-low γ PAC changes. The overall coherence between bilateral GPi was not significantly altered with unilateral movement, however the preferred phase difference in the high β range increased from 0.23 (±1.31) radians during rest to 1.99 (±0.78) radians during movement execution. Together, the present results suggest that unilateral motor control involves bilateral basal ganglia networks with movement features differentially encoded by distinct frequency bands. The lateralization of low β and low γ attenuation with movement suggests that these frequency bands are specific to the motor act whereas symmetrical expression of α, high β, and HFO oscillations best correspond to motor state. The restriction of movement-related PAC modulation to the contralateral GPi indicates that cross-frequency interactions appear to be associated with lateralized movements. Despite no significant movement-related changes in the interhemispheric coherence, the increase in phase difference suggests that the communication between bilateral GPi is altered with unilateral movement

    A new neurosurgical tool incorporating differential geometry and cellular automata techniques

    Get PDF
    Using optical coherence imaging, it is possible to visualize seizure progression intraoperatively. However, it is difficult to pinpoint an exact epileptic focus. This is crucial in attempts to minimize the amount of resection necessary during surgical therapeutic interventions for epilepsy and is typically done approximately from visual inspection of optical coherence imaging stills. In this paper, we create an algorithm with the potential to pinpoint the source of a seizure from an optical coherence imaging still. To accomplish this, a grid is overlaid on optical coherence imaging stills. This then serves as a grid for a two-dimensional cellular automation. Each cell is associated with a Riemannian curvature tensor representing the curvature of the brain's surface in all directions for a cell. Cells which overlay portions of the image which show neurons that are firing are considered "depolarized"

    Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation

    Get PDF
    The subthalamic nucleus (STN) supports action selection by inhibiting all motor programs except the desired one. Recent evidence suggests that STN can also cancel an already selected action when goals change, a key aspect of cognitive control. However, there is little neurophysiological evidence for dissociation between selecting and cancelling actions in the human STN. We recorded single neurons in the STN of humans performing a stop-signal task. Movement-related neurons suppressed their activity during successful stopping, whereas stop-signal neurons activated at low-latencies near the stop-signal reaction time. In contrast, STN and motor-cortical beta-bursting occurred only later in the stopping process. Task-related neuronal properties varied by recording location from dorsolateral movement to ventromedial stop-signal tuning. Therefore, action selection and cancellation coexist in STN but are anatomically segregated. These results show that human ventromedial STN neurons carry fast stop-related signals suitable for implementing cognitive control
    • …
    corecore