3 research outputs found

    Chemical Looping Reforming for syngas generation at real process conditions in packed bed reactors: an experimental demonstration

    No full text
    Chemical looping reforming (CLR) is a promising technology for syngas production combining autothermal operation with integrated CO2 capture. At large scale, reformer outlet pressure during syngas production is an important factor for the overall plant’s process efficiency and defines the energy requirements for downstream processing. Packed bed reactors are widely used and established in industry for high pressure operating conditions due to their robust and, compared to other reactor types, simpler engineering. In this paper, CLR in packed bed reactors (CLR-PB) is demonstrated under a pressure range of 1 – 5 bar in a lab scale reactor, using NiO/CaAl2O4 as the oxygen carrier (OC). Oxidation, reduction and dry reforming processes were examined in a wide range of temperature (400 – 900 °C), pressure (1 – 5 bar), flowrate (10 – 40 NLPM) and different inlet gas compositions, providing an important foreground for the optimal operating conditions for each process.Furthermore, a full CLR-PB pseudo-continuous cycle has been successfully demonstrated for the first time in a lab reactor setup. During the full cycle operation, CH4 conversion > 99% has been achieved, while the temperature and concentration profiles provided identical results for consecutive cycles verifying the continuity and the feasibility of the process. These results constitute the basis for the scale-up of the process, where heat losses would be minimized and the energy efficiency of the process would be significantly higher

    Thermochemical syngas generation via solid looping process: An experimental demonstration using Fe-based material

    No full text
    Chemical looping is investigated for the production of syngas via reforming or reverse water gas shift in a packed bed reactor using 500 g of Fe on Al2O3 was demonstrated. Oxidation, reduction of the OC and subsequent catalytic reactions of reforming or reverse water gas shift were examined in a temperature range of 600–900 °C and a pressure range of 1–3 bara at high flowrate. Different inlet gas compositions were explored for the considered gas–solid and catalytic reaction stages. Oxidation with air successfully heated the reactor. CH4 resulted ineffective at reducing the Fe-based oxygen carrier while H2 and CO-rich stream were able to achieve full reduction to FeO of the material. In terms of catalytic activity, the maximum conversion of CH4 achieved during the reforming was limited to 62.8 % at 900 °C and 1 bara.Thermally integrated chemical looping reverse water gas shift was studied as option for CCU in combination with green H2 to produce renewable fuels. A H2/CO value of 2 could be achieved by feeding H2/CO2 of 2. The pressure did not substantially affect the conversion and the bed did not present carbon deposition.The ability of a Fe-based packed bed chemical looping reactor to recover after the carbon deposition was also explored. It was found that using a mixture of CH4 and CO2 achieved 92% recovery of the original capacity

    Experimental proof of concept of Blast Furnace Gas decarbonisation via CASOH process.

    No full text
    The authors acknowledge the financial support from C4U Project funded by the European H2020 Programme under Grant Agreement no 884418 and additional funding from the Spanish Ministry of Economy and Competitiveness (PTI+ TransEner TRE2021-03-005) to allow operations of CASOH at high pressure
    corecore