46 research outputs found

    Plasma osteoprotegerin is related to carotid and peripheral arterial disease, but not to myocardial ischemia in type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular disease (CVD) is frequent in type 2 diabetes mellitus patients due to accelerated atherosclerosis. Plasma osteoprotegerin (OPG) has evolved as a biomarker for CVD. We examined the relationship between plasma OPG levels and different CVD manifestations in type 2 diabetes.</p> <p>Methods</p> <p>Type 2 diabetes patients without known CVD referred consecutively to a diabetes clinic for the first time (n = 305, aged: 58.6 ± 11.3 years, diabetes duration: 4.5 ± 5.3 years) were screened for carotid arterial disease, peripheral arterial disease, and myocardial ischemia by means of carotid artery ultrasonography, peripheral ankle and toe systolic blood pressure measurements, and myocardial perfusion scintigraphy (MPS). In addition, plasma OPG concentrations and other CVD-related markers were measured.</p> <p>Results</p> <p>The prevalence of carotid arterial disease, peripheral arterial disease, and myocardial ischemia was 42%, 15%, and 30%, respectively. Plasma OPG was significantly increased in patients with carotid and peripheral arterial disease compared to patients without (p < 0.001, respectively), however, this was not the case for patients with myocardial ischemia versus those without (p = 0.71). When adjusted for age, HbA1c and U-albumin creatinine ratio in a multivariate logistic regression analysis, plasma OPG remained strongly associated with carotid arterial disease (adjusted OR: 2.12; 95% CI: 1.22-3.67; p = 0.008), but not with peripheral arterial disease or myocardial ischemia.</p> <p>Conclusions</p> <p>Increased plasma OPG concentration is associated with carotid and peripheral arterial disease in patients with type 2 diabetes, whereas no relation is observed with respect to myocardial ischemia on MPS. The reason for this discrepancy is unknown.</p> <p>Trial registration number</p> <p>at <url>http://www.clinicaltrial.gov</url>: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00298844">NCT00298844</a></p

    The key glycolytic enzyme phosphofructokinase is involved in resistance to antiplasmodial glycosides

    Get PDF
    ABSTRACT Plasmodium parasites rely heavily on glycolysis for ATP production and for precursors for essential anabolic pathways, such as the methylerythritol phosphate (MEP) pathway. Here, we show that mutations in the Plasmodium falciparum glycolytic enzyme, phosphofructokinase (PfPFK9), are associated with in vitro resistance to a primary sulfonamide glycoside (PS-3). Flux through the upper glycolysis pathway was significantly reduced in PS-3-resistant parasites, which was associated with reduced ATP levels but increased flux into the pentose phosphate pathway. PS-3 may directly or indirectly target enzymes in these pathways, as PS-3-treated parasites had elevated levels of glycolytic and tricarboxylic acid (TCA) cycle intermediates. PS-3 resistance also led to reduced MEP pathway intermediates, and PS-3-resistant parasites were hypersensitive to the MEP pathway inhibitor, fosmidomycin. Overall, this study suggests that PS-3 disrupts core pathways in central carbon metabolism, which is compensated for by mutations in PfPFK9, highlighting a novel metabolic drug resistance mechanism in P. falciparum. IMPORTANCE Malaria, caused by Plasmodium parasites, continues to be a devastating global health issue, causing 405,000 deaths and 228 million cases in 2018. Understanding key metabolic processes in malaria parasites is critical to the development of new drugs to combat this major infectious disease. The Plasmodium glycolytic pathway is essential to the malaria parasite, providing energy for growth and replication and supplying important biomolecules for other essential Plasmodium anabolic pathways. Despite this overreliance on glycolysis, no current drugs target glycolysis, and there is a paucity of information on critical glycolysis targets. Our work addresses this unmet need, providing new mechanistic insights into this key pathway

    Crop Updates 2001 - Cereals

    Get PDF
    This session covers forty two papers from different authors: PLENARY 1. Planning your cropping program in season 2001, Dr Ross Kingwell, Agriculture Western Australia and University of Western Australia WORKSHOP 2. Can we produce high yields without high inputs? Wal Anderson, Centre for Cropping Systems, Agriculture Western Australia VARIETIES 3. Local and interstate wheat variety performance and $ return to WA growers, Eddy Pol, Peter Burgess and Ashley Bacon, Agritech Crop Research CROP ESTABLISHMENT 4 Soil management of waterlogged soils, D.M. Bakker, G.J. Hamilton, D. Houlbrooke and C. Spann, Agriculture Western Australia 5. Effect of soil amelioration on wheat yield in a very dry season, M.A Hamza and W.K. Anderson, Agriculture Western Australia 6. Fuzzy tramlines for more yield and less weed, Paul Blackwell1 and Maurice Black2 1Agriculture Western Australia, 2Harbour Lights Estate, Geraldton 7. Tramline farming for dollar benefits, Paul Blackwell, Agriculture Western Australia NUTRITION 8. Soil immobile nutrients for no-till crops, M.D.A. Bolland1, R.F. Brennan1,and W.L. Crabtree2, 1Agriculture Western Australia, 2Western Australian No-Tillage Farmers Association 9. Burn stubble windrows: to diagnose soil fertility problems, Bill Bowden, Chris Gazey and Ross Brennan, Agriculture Western Australia 10. Calcium: magnesium ratios; are they important? Bill Bowden1, Rochelle Strahan2, Bob Gilkes2 and Zed Rengel2 1Agriculture Western Australia, 2Department of Soil Science and Plant Nutrition, UWA 11. Responses to late foliar applications of Flexi-N, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 12. A comparison of Flexi-N placements, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 13. What is the best way to apply potassium? Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, CSBP futurefarm 14. Claying affects potassium nutrition in barley, Stephen Loss, David Phelps, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm 15. Nitrogen and potassium improve oaten hay quality, Stephen Loss, Tim O’Dea, Patrick Gethin, Ryan Guthrie, Lisa Leaver, CSBP futurefarm AGRONOMY 16. Agronomic responses of new wheat varieties in the northern wheatbelt, Darshan Sharma and Wal Anderson, Agriculture Western Australia 17. Wheat agronomy research on the south coast, Mohammad Amjad and Wal Anderson, Agriculture Western Australia 18. Influence of sowing date on wheat yield and quality in the south coast environment, Mohammad Amjadand Wal Anderson, Agriculture Western Australia 19. More profit from durum, Md.Shahajahan Miyan and Wal Anderson, Agriculture Western Australia 20. Enhancing recommendations of flowering and yield in wheat, JamesFisher1, Senthold Asseng2, Bill Bowden1 and Michael Robertson3 ,1AgricultureWestern Australia, 2CSIRO Plant Industry, 3CSIRO Sustainable Ecosystems 21. When and where to grow oats, Glenn McDonald, Agriculture Western Australia 22. Managing Gaidner barley for quality, Kevin Young and Blakely Paynter, Agriculture Western Australia PESTS AND DISEASES 23. Strategies for leaf disease management in wheat, Jatinderpal Bhathal1, Cameron Weeks2, Kith Jayasena1 and Robert Loughman1 ,1Agriculture Western Australia. 2Mingenew-Irwin Group Inc 24. Strategies for leaf disease management in malting barley, K. Jayasena1, Q. Knight2 and R. Loughman1, 1Agriculture Western Australia, 2IAMA Agribusiness 25. Cereal disease diagnostics, Dominie Wright and Nichole Burges, Agriculture Western Australia 26. The big rust: Did you get your money back!! Peter Burgess, Agritech Crop Research 27. Jockey – winning the race against disease in wheat, Lisa-Jane Blacklow, Rob Hulme and Rob Giffith, Aventis CropScience 28. Distribution and incidence of aphids and barley yellow dwarf virus in over-summering grasses in WA wheatbelt, Jenny Hawkes and Roger Jones, CLIMA and Agriculture Western Australia 29. Further developments in forecasting aphid and virus risk in cereals, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 30. Effect of root lesion nematodes on wheat yields in Western Australia, S. B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia 31. Rotational crops and varieties for management of root lesion nematodes in Western Australia, S.B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia WEEDS 32. Phenoxy herbicide tolerance of wheat, Peter Newman and Dave Nicholson, Agriculture Western Australia 33. Tolerance of wheat to phenoxy herbicides,Harmohinder S. Dhammu, Terry Piper and Mario F. D\u27Antuono, Agriculture Western Australia 34. Herbicide tolerance of durum wheats, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Agriculture Western Australia 35. Herbicide tolerance of new wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia BREEDING 36. Towards molecular breeding of barley: construction of a molecular genetic map, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Garry Ablett3, Reg Lance4, Rob Potter5 and Peter Langridge6,1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Qld, 3Centre for Plant Conservation Genetics Southern Cross University, Lismore NSW, 5SABC Murdoch University, WA, 6Department of Plant Science University of Adelaide, Glen Osmond SA 37. Toward molecular breeding of barley: Identifying markers linked to genes for quantitative traits, Mehmet Cakir1, Nick Galwey1, David Poulsen2, Reg Lance3, Garry Ablett4, Greg Platz2, Joe Panozzo5, Barbara Read6, David Moody5, Andy Barr7 and Peter Langridge7 , 1Plant Sciences, Faculty of Agriculture, UWA, 2Queensland Department of Primary Industries, Warwick, QLD,3Agriculture Western Australia, 4Centre for Plant Conservation Genetics, Southern Cross University, Lismore NSW, 5VIDA Private Bag 260, Horsham VIC, 6NSW Dept. of Agriculture, Wagga Wagga NSW, 7Department of Plant Science, University of Adelaide, Glen Osmond SA 38. Can we improve grain yield by breeding for greater early vigour in wheat? Tina Botwright1, Tony Condon1, Robin Wilson2 and Iain Barclay2, 1CSIRO Plant Industry, 2Agriculture Western Australia MARKETING AND QUALITY 39. The Crop Improvement Royalty, Howard Carr, Agriculture Western Australia 40. GrainGuardÔ - The development of a protection plan for the wheat industry, Greg Shea, Agriculture Western Australia CLIMATE 41. Rainfall – what happened in 2000 and the prospects for 2001, Ian Foster, Agriculture Western Australia 42. Software for climate management issues, David Tennant,Agriculture Western Australia CONTRIBUTING AUTHOR CONTACT DETAIL

    Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants

    Get PDF
    To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Determination of the Optimal Level of Dietary Zinc for Newly Weaned Pigs: A Dose-Response Study

    No full text
    One hundred and eighty individually housed piglets with an initial body weight of 7.63 &plusmn; 0.98 kg (at 28 days of age) were fed a diet containing either 153, 493, 1022, 1601, 2052 or 2407 mg zinc/kg (added Zn as zinc oxide; ZnO) from day 0&ndash;21 post weaning to determine the optimal level of Zn for weaned piglets. Body weight, feed intake and faecal scores were recorded, and blood and faecal samples were collected. Dietary Zn content quadratically affected both feed intake and gain in the first two weeks, with an approximately 1400 mg Zn/kg diet and a Zn intake of 400 mg/day as the optimal levels. The relative risk of diarrhoea increased up to 60% at day 7 and 14 if serum Zn status dropped below the weaning level (767 &micro;g/L), and maintain the weaning serum Zn status required approximately 1100 mg Zn/kg (166 mg Zn/day) during week 1. Blood markers of intestinal integrity (D-lactate and diamine oxidase) were unaffected by dietary Zn, and dietary Zn levels of 1022 and 1601 mg/kg did not affect the faecal numbers of total bacteria, Lactobacilli and E. Coli bacteria compared to 153 mg Zn/kg. These results indicate that the requirement for Zn in newly weaned piglets may be substantially higher than currently assumed
    corecore