449 research outputs found

    Solar thermal management materials

    Get PDF
    Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminan

    Single molecule electronic devices with carbon-based materials: Status and opportunity

    Get PDF
    The field of single molecule electronics has progressed remarkably in the past decades by allowing for more versatile molecular functions and improving device fabrication techniques. In particular, electrodes made from carbon-based materials such as graphene and carbon nanotubes (CNTs) may enable parallel fabrication of multiple single molecule devices. In this perspective, we review the recent progress in the field of single molecule electronics, with a focus on devices that utilizes carbon-based electrodes. The paper is structured in three main sections: (i) controlling the molecule/graphene electrode interface using covalent and non-covalent approaches, (ii) using CNTs as electrodes for fabricating single molecule devices, and (iii) a discussion of possible future directions employing new or emerging 2D materials. This journal i

    From Nanofabrication to Self-fabrication – Tailored Chemistry for Control of Single Molecule Electronic Devices

    Get PDF
    Single molecule electronics is a field of research focused on the use of single molecules as electronics components. During the past 15 years the field has concentrated on development of test beds for measurements on single molecules. Bottom–up approaches to single molecule devices are emerging as alternatives to the dominant top–down nanofabrication techniques. One example is solution-based self-assembly of a molecule enclosed by two gold nanorod electrodes. This article will discuss recent attempts to control the self-assembly process by the use of supramolecular chemistry and how to tailor the electronic properties of a single molecule by chemical design

    Strategic prevention of musculoskeletal disorders in elderly care

    Get PDF

    A photolabile protection strategy for terminal alkynes

    Get PDF
    AbstractWe present a strategy for photolabile protection of terminal alkynes. Several photo-caged alcohols were synthesized via mild copper(II)-catalyzed substitution between tertiary propargylic alcohols and 2-nitrobenzyl alcohol to build up robust, base stable o-nitrobenzyl (NB) photo-cleavable compounds. We compare the new photolabile protecting group with the commonly used alkyne protecting group, 2-methyl-3-butyn-2-ol and the results show that NB ethers are stable under the cleaving conditions for the cleavage of methylbutynol protected alkynes. Additionally, we present the synthesis of photo-cleavable NB derivatives containing thiol groups that can serve as agents for photoinduced surface functionalization reactions

    Triplet-triplet annihilation based near infrared to visible molecular photon upconversion

    Get PDF
    Triplet-triplet annihilation based molecular photon upconversion (TTA-UC) is an exciting research area for a broad range of photonic applications due to its tunable spectral range and possible operation at non-coherent solar irradiance. Most of the TTA-UC studies are limited to Visible to Visible (Vis to Vis) energy upconversion. However, for several practical photonic applications, efficient near infrared (NIR) to Vis upconversion is preferred. Examples include, (i) photovoltaics where TTA-UC could lead to utilization of a larger part of the solar spectrum and (ii) in NIR stimulated biological applications where the deep penetration and non-invasive nature of NIR light coupled to TTA-UC offers new opportunities. Although, NIR to Vis TTA-UC is known since 2007, the recent five years have witnessed quite a progress in terms of the development of new chromophores, hybrid systems and fabrication techniques to increase the UC quantum yield at low excitation intensity. With this tutorial review we are reviewing recent progress, identifying existing challenges and discus possible future directions and opportunities
    • …
    corecore