1,140 research outputs found

    Seismic Analysis of Pile Group Using Pseudostatic Approach

    Get PDF
    This paper evaluates a simple approximate pseudostatic method for estimating the maximum internal forces and horizontal displacements of pile group subjected to lateral seismic excitation. The method involves two main steps. At first the free-field soil movements caused by the earthquake are computed. Then the response of the pile group based on the maximum free-field soil movements which considered as static movements as well as a static loading at the pile head, which depends on the computed spectral acceleration of the structure being supported is analyzed. The methodology takes into account the effects of group interaction and soil yielding at pile-soil interface. The applicability has been verified by both experimental centrifuge models of pile-supported structures and field measurements of Ohba-Ohashi Bridge in Japan. It is demonstrated that the proposed method yields reasonable estimates of the pile maximum moment, shear, and horizontal displacement for many practical cases despite of its simplicity. Limitations and reliability of the method are discussed and some practical conclusions on the performance of the proposed approach are presented

    Crystal structure of lignin peroxidase.

    Full text link

    Microfluidic SAXS study of lamellar and multilamellar vesicle phases of linear sodium alkylbenzenesulfonate surfactant with intrinsic isomeric distribution

    Get PDF
    The structure and flow behaviour of a concentrated aqueous solution (45 w.t. %) of the ubiquitous linear sodium alkylbenzene sulfonate (NaLAS) surfactant is investigated by microfluidic small-angle X-ray scatterong (SAXS) at 70 ⁰C. NaLAS is an intrinsically complex mixture of over 20 surfactant molecules, presenting coexisting micellar (L1) and lamellar (Lα) phases. Novel microfluidic devices were fabricated to ensure pressure and thermal resistance, ability to handle viscous fluids, and low SAXS background. Polarized light optical microscopy showed that the NaLAS solution exhibits wall slip in microchannels, with velocity profiles approaching plug flow. Microfluidic SAXS demonstrated the structural spatial heterogeneity of the system with a characteristic lengthscale of 50 nL. Using a statistical flow-SAXS analysis we identified the micellar phase and multiple coexisting lamellar phases with a continuous distribution of d spacings between 37.5 Å - 39.5 Å. Additionally, we showed that the orientation of NaLAS lamellar phases is strongly affected by a single microfluidic constriction. The bilayers align parallel to the velocity field upon entering a constriction and perpendicular to it upon exiting. On the other hand, multi-lamellar vesicle phases are not affected under the same flow conditions. Our results demonstrate that, despite the compositional complexity inherent to NaLAS, microfluidic SAXS can rigorously elucidate its structure and flow response

    Influence of site investigations on the design of pad footings

    Get PDF
    The document attached has been archived with permission from the copyright holder.The reliability of foundations is greatly influenced by uncertainties associated with the geotechnical model on which their design is based. In turn, the geotechnical model is derived from a site investigation whose scope is largely dictated by financial constraints, rather than the variability of the ground. This paper seeks to quantify the influence of the scope of site investigations on the design of pad footings. This is achieved by simulating geotechnical profiles, where the soil properties vary from location to location in a random yet continuous and realistic fashion. The simulated soil profiles are generated using random field theory, which makes use of three statistical parameters: the mean, variance and the scale of fluctuation – which is a measure of the randomness of the geotechnical property in question. The methodology involves generating a geotechnical profile by simulating a 3D random field to know soil properties at each point in detail. A site investigation is then simulated by sampling from the 3D random field. By using the sampled values, a pad footing is designed to conform to a serviceability criterion, as would be achieved in practice. A benchmark design is also undertaken making use of the complete knowledge of the soil profile. This design is achieved using a numerical process involving a 3D finite element analysis. Both designs are undertaken on numerous different simulated soil profiles in a Monte Carlo analysis. A comparison of the two designs provides failure and over-design probabilities for a series of site investigation plans. It was observed that the probability of failure and overdesign decreased with an increasing site investigation scope, as expected. The results provide information to estimate the relative benefit of conducting various scopes of site investigations

    Practical mammography

    Get PDF
    ‘Digital health’ is an overarching concept that currently lacks theoretical definition and common terminology. For instance, this broad and emerging field includes all of the following terms within its lexicon: mHealth, Wireless Health, Health 2.0, eHealth, e-Patient(s), Healthcare IT/Health IT, Big Data, Health Data, Cloud Computing, Quantified Self, Wearable Computing, Gamification, and Telehealth/Telemedicine [1]. However, whilst a definition is difficult to provide, in this overview it is considered that digital health is the use of digital media to transform the way healthcare provision is conceived and delivered. We consider it does this through three basic features

    Climate drives fire synchrony but local factors control fire regime change in northern Mexico

    Get PDF
    The occurrence of wildfire is influenced by a suite of factors ranging from “top-down” influences (e.g., climate) to “bottom-up” localized influences (e.g., ignitions, fuels, and land use). We carried out the first broad-scale assessment of wildland fire patterns in northern Mexico to assess the relative influence of top-down and bottom-up drivers of fire in a region where frequent fire regimes continued well into the 20th century. Using a network of 67 sites, we assessed (1) fire synchrony and the scales at which synchrony is evident, (2) climate drivers of fire, and (3) asynchrony in fire regime changes. We found high fire synchrony across northern Mexico between 1750 and 2008, with synchrony highest at distances oscillations, especially El Niño-Southern Oscillation, were important drivers of fire synchrony. However, bottom-up factors modified fire occurrence at smaller spatial scales, with variable local influence on the timing of abrupt, unusually long fire-free periods starting between 1887 and 1979 CE. Thirty sites lacked these fire-free periods. In contrast to the neighboring southwestern United States, many ecosystems in northern Mexico maintain frequent fire regimes and intact fire–climate relationships that are useful in understanding climate influences on disturbance across scales of space and time

    Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins

    Get PDF
    As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O_2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal–oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal–oxo species, are the basis for the various biological functions of O_2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O_2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron–oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs
    • 

    corecore