218 research outputs found
THE EFFECTS OF BOLDNESS ON THREAT-SENSITIVE DECISIONS IN FISHES
Personality describes the consistent, individual differences in the behaviour we observe among human and non-human models alike. One of the components of human and animal personality which has sparked interest, is the boldness trait. Boldness is the propensity to engage in risk taking behaviour, and as such, has important ecological impacts on the interactions between animals. By changing the amount of risk taking behaviour, boldness effectively alters the outcome of predator-prey interactions. Boldness may alter a preyâs decision between an antipredator response or continuing other important behaviours (e.g. foraging or reproduction) when faced with a predator. The difference in response may be the result of a changed perception in the amount of local risk, or due to a differential amount of information gathered from the environment. In either case, more information about local predators increases the likelihood that a prey will appropriately respond to a threat. In aquatic systems, prey often receive chemical information from the scent of predators or chemical released by conspecifics. Specifically, alarm cues are released following damage to the skin tissue of many prey species and thus are reliable indicators of risk. These alarm cues are often the first line of prey defense, as they degrade slowly and are passed through the aquatic medium in currents. Secondary information regarding local risk often comes from the visual cues associated with the sight of a predator or frightened conspecifics. This provides prey with reliable information about risk since the transmission distance of visual cues is limited in water and further lessened by vegetation and turbidity. My experiment demonstrates that boldness in fathead minnows (Pimephales promelas) is stable over shorter temporal scales, and subsequently, affects how minnows acclimate to their environment and respond to visual and chemical information on local threats. In low risk environments, personality and turbidity strongly affect the threat-sensitive response of minnows. Shy minnows demonstrate no antipredator response when in turbid water and bold minnows elicit a strong fright response in turbid conditions. In clear conditions, the opposite occurs with large fright responses in shy minnows and no response in bold minnows. Conversely, when minnows were exposed to high amounts of environmental risk through the exposure to alarm cues, they all elicit strong fright responses regardless of personality or turbidity. This is the first experiment to investigate the complex interplay of personality and multiple cue types on the threat-sensitive response of prey fish
A linear-time benchmarking tool for generalized surface codes
Quantum information processors need to be protected against errors and faults. One of the most widely considered fault-tolerant architecture is based on surface codes. While the general principles of these codes are well understood and basic code properties such as minimum distance and rate are easy to characterize, a code's average performance depends on the detailed geometric layout of the qubits. To date, optimizing a surface code architecture and comparing different geometric layouts relies on costly numerical simulations. Here, we propose a benchmarking algorithm for simulating the performance of surface codes, and generalizations thereof, that runs in linear time. We
implemented this algorithm in a software that generates performance reports and allows to quickly compare different architectures
Similar Breeding Success of Bearded Vultures in Disturbed and Undisturbed Areas Shows Evidence of Adaptation Capabilities
Retraction notice: We have been informed that because of logistical reasons the authors of Comor et al. (2019) were unable able to provide the answers requested by Duriez et al. (2020) regarding the protocols, the quantitative data, or the small and unbalanced sample sizes. At the authors\u27 request, the article by Comor et al. published in HumanâWildlife Interactions 13(3) has been retracted.
Human activities are usually considered as disturbing factors impeding the breeding success of wild animals. Protected areas can then be set up to restrict such activities aiming to improve wildlifeâs breeding success and conservation. To test for the efficiency of these measures, we compared the breeding success of bearded vultures (Gypaetus barbatus) in the western French Pyrenees from autumn 2011 to spring 2017, where eyries are located either within or outside restricted areas, where potentially disturbing activities are restricted (e.g., helicopter flights, forestry works, hunting, paragliding). We monitored reproducing bearded vultures and checked the breeding success at different stages (laying, incubation, hatching, and survival at 2 months) of formed pairs. We then compared the success of each stage between eyries located in restricted and non-restricted areas, including weather data in our model. We found that the breeding success was similar in both types of areas, but that is was negatively impacted by precipitations, which may directly affect the ability of the egg or chick to withstand cold. We also focused on the potential disturbance of hunting parties on the behavior of bearded vultures and found no evidence that hunting was perceived as a threat by bearded vultures; they may in fact benefit from gut piles. Hence, our comparison of the breeding success between eyries located in restricted versus non-restricted areas shows no detrimental impact of human activities and calls for some studies to assess the effectiveness of restrictions in improving the breeding success of bearded vultures, as this species seems to show some degree of tolerance to human activities and may significantly suffer from harsh winter weather in this area
Attitude and Position Control of a Flapping Micro Aerial Vehicle
International audienc
SynthÚse et caractérisation d'analogues de peptides antimicrobiens riches en arginines
La rĂ©sistance antimicrobienne est un problĂšme de santĂ© publique de plus en plus inquiĂ©tant. En effet, si ce problĂšme n'est pas contrĂŽlĂ© dĂšs maintenant, dans les prochaines annĂ©es, nous pourrions arriver dans une Ăšre post-antibiotique oĂč de simples infections pourraient recommencer Ă tuer. Afin d'Ă©viter de tels enjeux, il est primordial que de nouveaux antibiotiques soient dĂ©veloppĂ©s pour remplacer les mĂ©dicaments contre lesquels les bactĂ©ries se sont adaptĂ©es. De toutes nouvelles classes de mĂ©dicaments seraient nĂ©cessaires et l'une d'entre elles est la classe des peptides antimicrobiens. Ces segments protĂ©iques sont retrouvĂ©s dans une impressionnante variĂ©tĂ© d'organismes et sont utilisĂ©s comme premiĂšre ligne de dĂ©fense contre les infections bactĂ©riennes. Le fonctionnement de ces molĂ©cules n'est pas entiĂšrement compris, mais il est prĂ©sumĂ© qu'elles crĂ©ent des pores dans les membranes bactĂ©riennes, causant ainsi la mort des cellules attaquĂ©es. Ces molĂ©cules ont un Ă©norme potentiel, mais de nombreux problĂšmes empĂȘchent leur utilisation clinique. Dans le laboratoire du Professeur Voyer, un peptide modĂšle, analogue des peptides antimicrobiens, a Ă©tĂ© synthĂ©tisĂ©. Ce peptide composĂ© de 10 leucines et de quatre phĂ©nylalanines modifiĂ©es par des Ă©thers-couronnes a Ă©tĂ© modifiĂ© de façon systĂ©matique pour tenter de comprendre les dĂ©terminants de l'activitĂ© et de la sĂ©lectivitĂ© des peptides antimicrobiens. Dans ce mĂ©moire, la synthĂšse et la caractĂ©risation des analogues dans lesquels trois leucines ont Ă©tĂ© substituĂ©es par des acides aminĂ©s cationiques seront discutĂ©es. Ces peptides ont Ă©tĂ© caractĂ©risĂ©s par des Ă©tudes biophysiques comme le dichroĂŻsme circulaire, l'infrarouge Ă transformĂ©e de Fourier et le relargage de la calcĂ©ine par fluorescence. De plus, des tests d'activitĂ© biologique comme l'activitĂ© antimicrobienne et l'activitĂ© hĂ©molytique ont aussi Ă©tĂ© rĂ©alisĂ©s et sont prĂ©sentĂ©s dans le prĂ©sent mĂ©moire
STRONG REPRESENTATION OF THE QUANTILE FUNCTION FOR LEFT TRUNCATED AND DEPENDENT DATA
International audienceLet (X i) iâ„1 be a sequence of strong-mixing random variables with common unknown absolutely continuous distribution function F subject to random left truncation. Let F â1 (p) denote the pth (p â]0, 1[) quantile function of the marginal distribution function of the X i 's which is estimated by the sample quantile F â1 n (p). In this paper, we derive the strong consistency and a strong representation for F â1 n (p), the quantile function of the Lynden-Bell estimator of F for strong-mixing processes
Apport croisé de la modélisation déterministe et géostatistique. Exemple des concentrations en nitrates de la Seine.
5pages+résuméLe long des réseaux hydrographiques, l'espacement des stations de mesure des concentrations et l' hétérogénéité des mesures compliquent le calage des modÚles géostatistiques nécessaires à l'estimation des concentrations (Bernard-Michel et de Fouquet, 2006). Le recours à un modÚle déterministe peut-il permettre de remédier à la rareté des mesures, en fournissant débit, concentrations sur tout le domaine simulé ? Nous examinons par bief les résultats du modÚle PROSE qui décrit la Seine et la Marne peu avant leur confluence jusqu'à Poses. Temporellement les mesures et la simulation PROSE sont ajustables en modÚle linéaire de corégionalisation. Spatialement, le cokrigeage permet de recaler les conditions aux limites, et donc la simulation, aux mesures de contrÎle. reproduisant la variabilité spatiale, mais faiblement corrélé aux mesures, le modÚle PROSE s'interprÚte alors en terme de simulation non conditionnelle. Enfin, un modÚle de variogramme tri-variable débit-flux-concentrations est ajusté spatialement
CaractĂ©risation spatiale et temporelle de la qualitĂ© des « Masses dâEau Cours dâEau »
FocalisĂ© sur les indicateurs physico-chimiques soutenant la biologie des cours dâeau, lâarticle examine lâinterpolation de ce type de mesures, dans le temps et lâespace, pour le calcul des indices lĂ©gaux requis par la Directive Cadre EuropĂ©enne sur lâEau. En effet, le calcul dâindicateurs statistiques, Ă partir dâune information trĂšs lacunaire, pose problĂšme. DiffĂ©rentes mĂ©thodes de calcul du quantile 90 par station sont-elles Ă©quivalentes? Comment cet indicateur varie-t-il spatialement? Le RĂ©seau National de Bassin français fournit-il suffisamment dâinformation pour une caractĂ©risation pertinente de la qualitĂ© des eaux?Les sorties du modĂšle dĂ©terministe ProSe appliquĂ© Ă la Seine, Ă pas de temps journalier, sont utilisĂ©es pour comparer diffĂ©rentes mĂ©thodes de calcul des indicateurs. Les rĂ©sultats dĂ©duits du modĂšle exhaustif sont comparĂ©s Ă ceux calculĂ©s aprĂšs un Ă©chantillonnage simulant celui du rĂ©seau de surveillance.Deux calculs du quantile 90 temporel par station sont examinĂ©s : le calcul classique fondĂ© sur la fonction de quantile empirique, et une mĂ©thode lĂ©gĂšrement plus complexe, avec une pondĂ©ration temporelle et une linĂ©arisation de la fonction de quantile, qui attĂ©nue effectivement les biais induits par lâĂ©chantillonnage irrĂ©gulier durant lâannĂ©e, ou dĂ©coulant du nombre restreint de mesures.Trois mĂ©thodes de « spatialisation » sont ensuite testĂ©es afin dâobtenir des pourcentages dâoccurrence des quantiles par classe de qualitĂ© dans chaque « Masses dâEau Cours dâEau » : le « principe de dĂ©faillance » retient la station la plus dĂ©favorable; la deuxiĂšme mĂ©thode calcule la proportion des stations par classe de qualitĂ©; la derniĂšre pondĂšre chaque station par son « segment dâinfluence ». La spatialisation par segments dâinfluence des quantiles temporels au sein des « Masses dâEau Cours dâEau » amĂ©liore nettement les estimations des pourcentages dâoccurrence, montrant la nĂ©cessitĂ© de la prise en compte de la localisation des stations lors du calcul dâun indice de qualitĂ©.This research aimed to understand how to interpolate discrete measurements, in space and time, in order to calculate physico-chemical indicators in rivers, which are required by the European Water Framework Directive. Linked to this issue, several questions were addressed. Are the different methods used to calculate temporal 90th-percentiles at a given site equivalent? How does this legal indicator vary in space? Does the French National Basin Network provide enough information to make consistent water quality characterization?The daily outputs of the ProSe model applied to the Seine River were used as proxies to compare different calculation methods of the 90th-percentile. The results deduced from the exhaustive model were compared to those calculated, after sampling the outputs according to the monitoring network sampling scheme. Two calculations of the temporal 90th-percentile at a given site were examined: the classical method based on the empirical percentile function and a slightly more complex method that includes temporal weighting and linearization of the empirical percentile function. This second method reduced the estimation bias of the 90th-percentile induced by irregular and/or few measurements.Three methods for spatializing the 90th-percentiles were tested to obtain occurrence percentages of the percentiles for each quality class in each âStream Water Bodyâ: the âfailure principleâ consists in keeping only the worst site; the second approach calculates the proportion of sites located in each quality class; the third method allocates an influence segment to each measurement site. Spatializing temporal percentiles in âStream Water Bodiesâ by influence segments led to a marked improvement in occurrence percentage estimations and revealed the need to take into account the spatial configuration of measurement sites when calculating a quality indicator
Caractérisation spatiale et temporelle des "Masses d'Eau Cours d'Eau". Spatial and Temporal characterization of "River Water Bodies".
International audienceThis article aims to understand how to extrapolate in space and time discrete measurements in order to calculate physico-chemical indicators in rivers, which are required by the Water Framework Directive. Linked to this issue, few questions are addressed. Does the French National Basin Network provide enough information in order to make consistent water quality maps? How does the temporal indicator - the 90 percentile - vary in space? The outputs of the ProSe model applied to the Seine River are used to compare two different methods for calculating the 90 percentile: the classical method based on the empirical percentile function and a method that aims to reduce the estimation bias of the 90 percentile. This second method includes temporal weighting and linearization o the empirical percentile function, and therefore its application is a little more complex. But with this method the bias induced by irregular and/or few measurements is reduced. Three methods for spatializing the 90 percentiles have been tested in order to obtain occurrence percentages of the percentiles for each quality class. The first one is based on the "failure principle" and consists in keeping only the worst site for the considered "River Water Body". The second one respects the proportion of percentiles located in each quality class, while the third one allocates an influence segment to each measurement site. Spatializing temporal percentiles in "River Water Bodies" by influence segments leads to a marked improvement of occurrence percentage estimations and reveals the necessity to take into account the spatial configuration of measurement sites when calculating a quality indicator
- âŠ