282 research outputs found

    The carbon-to-oxygen ratio in stars with planets

    Full text link
    In some recent works, the C/O abundance ratio in high-metallicity stars with planets is found to vary from 0.4 to about 1.0. This has led to discussions about the existence of terrestrial planets with a carbon-dominated composition that is very different from the composition of the Earth. The C/O values were obtained by determining carbon abundances from high-excitation CI lines and oxygen abundances from the forbidden [OI] line at 6300 A. This weak line is, however, strongly affected by a nickel blend at high metallicities. Aiming for more precise C/O ratios, oxygen abundances in this paper are derived from the high-excitation OI triplet at 7774 A and carbon abundances from the CI lines at 5052 and 5380 A using MARCS model atmospheres and including non-LTE corrections. The results do not confirm the high C/O ratios previously found. C/O shows a tight, slightly increasing dependence on metallicity from C/O=0.58 at [Fe/H]=0.0 to C/O=0.70 at [Fe/H] =0.4 with an rms scatter of only 0.06. Assuming that the composition of a proto-planetary disk is the same as that of the host star, the C/O values found in this paper lend no support to the existence of carbon-rich planets. The small scatter of C/O among thin-disk stars suggests that the nucleosynthesis products of Type II supernovae and low- to intermediate-mass stars are well mixed in the interstellar medium.Comment: 10 pages, 11 figures, accepted for publication in A&

    High-precision abundances of elements in solar twin stars: Trends with stellar age and elemental condensation temperature

    Full text link
    HARPS spectra with S/N > 600 for 21 solar twin stars are used to determine very precise (sigma ~ 0.01 dex) differential abundances of C, O, Na, Mg, Al, Si, S, Ca, Ti, Cr, Fe, Ni, Zn, and Y in order to see how well [X/Fe] is correlated with elemental condensation temperature, Tc. In addition, precise (sigma < 0.8 Gyr) stellar ages are obtained by interpolating between Yonsei-Yale isochrones in the logg - Teff diagram. It is confirmed that the ratio between refractory and volatile elements is lower in the Sun than in most of the solar twins, but for many stars, the relation between [X/Fe] and Tc is not well defined. For several elements there is, instead, an astonishingly tight correlation between [X/Fe] and stellar age with amplitudes up to 0.2 dex over an age interval of 8 Gyr in contrast to the lack of correlation between [Fe/H] and age. While [Mg/Fe] increases with age, the s-process element yttrium shows the opposite behavior so that [Y/Mg] can be used as a sensitive chronometer for Galactic evolution. [Na/Fe] and [Ni/Fe] are not well correlated with stellar age, but define a tight Ni-Na relation similar to that previously found for more metal-poor stars. These results provide new constraints on supernovae yields and Galactic evolution. Furthermore, it is found that the C/O ratio evolves very little with time, which is of interest for discussions of the composition of exoplanets.Comment: 13 pages, 14 figures, and 2 on-line tables. To appear in A&

    Digesting New Elements in Peptide Transport

    Get PDF
    In this issue of Structure, Beale et al. (2015) define structurally and functionally a large extracellular domain unique to mammalian peptide transporters and its implications for the transport of basic di- and tri-peptides (Beale et al., 2015)

    Om ansættelsen til »Grundsteuerreinertrag« i Sønderjylland i 1870—78.

    Get PDF

    Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement

    Full text link
    To obtain an electron-density map from a macromolecular crystal the phase-problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitantly the determination of the heavy atom substructure. This is customarily done by direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available, as often the case for e.g. membrane proteins. Here we present an approach for heavy atom site identification based on a Molecular Replacement Parameter Matrix (MRPM) search. It involves an n-dimensional search to test a wide spectrum of molecular replacement parameters, such as clusters of different conformations. The result is scored by the ability to identify heavy-atom positions, from anomalous difference Fourier maps, that allow meaningful phases to be determined. The strategy was successfully applied in the determination of a membrane protein structure, the CopA Cu+-ATPase, when other methods had failed to resolve the heavy atom substructure. MRPM is particularly suited for proteins undergoing large conformational changes where multiple search models should be generated, and it enables the identification of weak but correct molecular replacement solutions with maximum contrast to prime experimental phasing efforts.Comment: 19 pages total, main paper: 6 pages (2 figures), supplementary material: 13 pages (2 figures, 9 tabels
    corecore