7 research outputs found

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

    Get PDF
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    FLT3 overexpression in acute leukaemias: new insights into the search for molecular mechanisms

    No full text
    FLT3 overexpression is a recurrent event in various acute leukaemia subtypes. This transcriptional deregulation is important to define the prognostic risk for many patients. Of note, the molecular mechanisms leading to this gene upregulation are unknown for a substantial number of cases. In this Mini-Review, we highlight the role of FLT3 overexpression in acute leukaemia and discuss emerging mechanisms accounting for this upregulation. The benefits of using targeted therapy are also addressed in the overexpression context, posing other therapeutic possibilities based on state-of-the-art knowledge that could be considered for future research

    CRLF2 expression associates with ICN1 stabilization in T-cell acute lymphoblastic leukemia

    No full text
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy with few molecular alterations showing a consensual prognostic value. CRLF2 overexpression was recently identified in high-risk T-ALL patients. For these cases, no genomic abnormality was found to be associated with CRLF2 overexpression. IKZF1 has been recently shown to be a direct transcriptional regulator of CRLF2 expression. Moreover, it is known that NOTCH1 antagonizes IKZF1 in T-ALL. In light of these pieces of evidence, we reasoned that IKZF1 binding perturbation and CRLF2 upregulation could be associated in T-ALL. We evaluated two independent series of pediatric T-ALL cases (PHOP, n = 57 and TARGET, n = 264) for the presence of common T-ALL molecular abnormalities, such as NOTCH1/FBXW7 mutations. We also assessed CRLF2 and IKZF1 gene expression. CRLF2 overexpression was observed in 14% (PHOP) and 16% (TARGET) of T-ALL patients. No correlation was found between mRNA expression of CRLF2 and IKZF1 in both cohorts. Interestingly, we show that patients with mutations affecting NOTCH1-PEST domain and/or FBXW7 had higher CRLF2 expression (P = .04). In summary, we demonstrate for the first time that only mutations resulting in ICN1 (intracellular domain of NOTCH1) stabilization are associated with CRLF2 overexpression

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia.

    No full text
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    IKZF1 deletions with COBL breakpoints are not driven by RAG-mediated recombination events in acute lymphoblastic leukemia

    No full text
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    Comparison of the clinical effect of the adhesive strategies of universal adhesives in the treatment of non-carious cervical lesions. Systematic review and meta-analysis.

    No full text
    corecore