868 research outputs found
Study of pion production in interactions on Ar in DUNE using GENIE and NuWro event generators
The study of pion production and the effects of final state interactions
(FSI) are important for data analysis in all neutrino experiments. For energies
at which current neutrino experiments are being operated, a significant
contribution to pion production is made by resonance production process. After
its production, if a pion is absorbed in the nuclear matter, the event may
become indistinguishable from quasi-elastic scattering process and acts as a
background. The estimation of this background is very essential for oscillation
experiments and requires good theoretical models for both pion production at
primary vertex and after FSI. Due to FSI, the number of final state pions is
significantly different from the number produced at primary vertex. As the
neutrino detectors can observe only the final state particles, the correct
information about the particles produced at the primary vertex is overshadowed
by FSI. To overcome this difficulty, a good knowledge of FSI is required which
may be provided by theoretical models incorporated in Monte Carlo (MC) neutrino
event generators. In this work, we will present simulated events for two
different MC generators - GENIE and NuWro, for pion production in CC
interactions on Ar target in DUNE experimental set up. A brief outline
of theoretical models used by generators is presented. The results of pion
production are presented in the form of tables showing the occupancy of primary
and final state pion topologies with 100 detector resolution and with
kinetic energy detector threshold cuts. We observe that NuWro (v-19.02.2) is
more transparent (less responsive) to absorption and charge exchange processes
as compared to GENIE (v-3.00.06), pions are more likely to be absorbed than
created during their intranuclear transport and there is need to improve
detector technology to improve the detector threshold for better results.Comment: 14 pages, 6 figures, 10 table
A Honeycomb Proportional Counter for Photon Multiplicity Measurement in the ALICE Experiment
A honeycomb detector consisting of a matrix of 96 closely packed hexagonal
cells, each working as a proportional counter with a wire readout, was
fabricated and tested at the CERN PS. The cell depth and the radial dimensions
of the cell were small, in the range of 5-10 mm. The appropriate cell design
was arrived at using GARFIELD simulations. Two geometries are described
illustrating the effect of field shaping. The charged particle detection
efficiency and the preshower characteristics have been studied using pion and
electron beams. Average charged particle detection efficiency was found to be
98%, which is almost uniform within the cell volume and also within the array.
The preshower data show that the transverse size of the shower is in close
agreement with the results of simulations for a range of energies and converter
thicknesses.Comment: To be published in NIM
The STAR Photon Multiplicity Detector
Details concerning the design, fabrication and performance of STAR Photon
Multiplicity Detector (PMD) are presented. The PMD will cover the forward
region, within the pseudorapidity range 2.3--3.5, behind the forward time
projection chamber. It will measure the spatial distribution of photons in
order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume
dedicated to the accelerator and detectors at RHI
Evidence from d+Au measurements for final-state suppression of high hadrons in Au+Au collisions at RHIC
We report measurements of single-particle inclusive spectra and two-particle
azimuthal distributions of charged hadrons at high transverse momentum (high
) in minimum bias and central d+Au collisions at =200 GeV.
The inclusive yield is enhanced in d+Au collisions relative to binary-scaled
p+p collisions, while the two-particle azimuthal distributions are very similar
to those observed in p+p collisions. These results demonstrate that the strong
suppression of the inclusive yield and back-to-back correlations at high
previously observed in central Au+Au collisions are due to final-state
interactions with the dense medium generated in such collisions.Comment: Final journal version. Data tables for figures may be downloaded from
the STAR home page: http://www.star.bnl.gov --> Publications --> Access to
STAR published dat
Rapidity and centrality dependence of proton and antiproton production from 197Au + 197Au collisions at √SNN = 130 GeV
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account
Pion-Xi correlations in Au-Au collisions at STAR
We present pion-Xi correlation analysis in Au-Au collisions at sqrt(s_NN)=
200 GeV and sqrt(s_NN) = 62.4 GeV, performed using the STAR detector at RHIC. A
Xi*(1530) resonance signal is observed for the first time in Au-Au collisions.
Experimental data are compared with theoretical predictions. The strength of
the Xi* peak is reproduced in the correlation function assuming that pions and
Xis emerge from a system in collective expansion.Comment: To appear in the proceedings of 18th Nuclear Physics Division
Conference of the EPS (NPDC18),Prague, 23.8.-29.8. 200
Transverse momentum and collision energy dependence of high hadron suppression in Au+Au collisions at ultrarelativistic energies
We report high statistics measurements of inclusive charged hadron production
in Au+Au and p+p collisions at \sqrtsNN=200 GeV. A large, approximately
constant hadron suppression is observed in central Au+Au collisions for
5\lt\pT\lt12 GeV/c. The collision energy dependence of the yields and the
centrality and \pT dependence of the suppression provide stringent constraints
on theoretical models of suppression. Models incorporating initial-state gluon
saturation or partonic energy loss in dense matter are largely consistent with
observations. We observe no evidence of \pT-dependent suppression, which may be
expected from models incorporating jet attentuation in cold nuclear matter or
scattering of fragmentation hadrons.Comment: Final journal version. Data tables for figures may be downloaded from
the STAR home page: http://www.star.bnl.gov --> Publications --> Access to
STAR published dat
Inclusive pi0 spectra at high transverse momentum in d-Au collisions at RHIC
Preliminary results on inclusive neutral pion production in d-Au collisions
at sqrt(s_NN) = 200 GeV in the pseudo-rapidity range 0<eta<1 are presented. The
measurement is performed using the STAR Barrel Electromagnetic calorimeter
(BEMC). In this paper, the analysis of the first BEMC hadron measurement is
described and the results are compared with earlier RHIC findings. The pi0
invariant differential cross sections show good agreement with next-to-leading
order (NLO) perturbative QCD calculations.Comment: 4 pages, 5 figures, 18th Nuclear Physics Division Conference of the
EPS, Prague, submitted to Nucl. Phys.
Azimuthally sensitive Hanbury Brown-Twiss interferometry in Au+Au collisions at sqrt(s_{NN}) = 200 GeV
We present the results of a systematic study of the shape of the pion
distribution in coordinate space at freeze-out in Au+Au collisions at RHIC
using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the
extracted HBT radii vs. emission angle indicate sources elongated perpendicular
to the reaction plane. The results indicate that the pressure and expansion
time of the collision system are not sufficient to completely quench its
initial shape.Comment: 6 pages, 4 figures, published versio
Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at s(NN)**(1/2) = 200-GeV
We present STAR measurements of the azimuthal anisotropy parameter and
the binary-collision scaled centrality ratio for kaons and lambdas
() at mid-rapidity in Au+Au collisions at
GeV. In combination, the and
particle-type dependencies contradict expectations from partonic energy loss
followed by standard fragmentation in vacuum. We establish
GeV/c as the value where the centrality dependent baryon enhancement ends. The
and values are consistent with
expectations of constituent-quark-number scaling from models of hadron
fromation by parton coalescence or recombination.Comment: 6 pages, 4 figures, 1 table. As published in PRL on Feb. 2, 2004;
Significant revisions have been made to the text and color has been added to
plot
- …