220 research outputs found

    Longitudinal and Transverse Response Functions in ^(56)Fe(e,e') at Momentum Transfer near 1 GeV/c

    Get PDF
    Inclusive electron-scattering cross sections have been measured for ^(56)Fe in the quasielastic region at electron energies between 0.9 and 4.3 GeV, at scattering angles of 15° and 85°. Longitudinal and transverse response functions at a q of 1.14 GeV/c have been extracted using a Rosenbluth separation. The experimental Coulomb sum has been obtained with aid of an extrapolation. The longitudinal response function, after correction for Coulomb distortion, is lower than quasifree-scattering-model predictions at the quasielastic peak and on the high-ω side

    y scaling in electron-nucleus scattering

    Get PDF
    Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A

    Measurement of tensor analyzing powers in deuteron photodisintegration

    Get PDF
    New accurate measurement of tensor analyzing powers T20, T21 and T22 in deuteron photodisintegration has been performed. Wide-aperture non-magnetic detectors allowed to cover broad kinematic ranges in a single setup: photon energy = 25 to 600 MeV, proton emission angle in CM = 24 to 48 deg. and 70 to 102 deg. New data provide a significant improvement of a few existing measurements. The angular dependency of the tensor asymmetries in deuteron photodisintegration is extracted for the first time.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Two-Body Photodisintegration of the Deuteron up to 2.8 GeV

    Get PDF
    Measurements were performed for the photodisintegration cross section of the deuteron for photon energies from 1.6 to 2.8 GeV and center-of-mass angles from 37° to 90°. The measured energy dependence of the cross section at θc.m. = 90° is in agreement with the constituent counting rules

    Calculation of energy levels and transition amplitudes for barium and radium

    Get PDF
    The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium is insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s7s, 7p7p and 6d6d single-electron states as well as the states of the 7s8s7s8s, 7s8p7s8p and 7s7d7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d26d^2, 7s8s7s8s, 7p27p^2, and 6d7p6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.Comment: 12 pages, 4 table

    The proton and deuteron F_2 structure function at low Q^2

    Get PDF
    Measurements of the proton and deuteron F2F_2 structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range 0.06<Q2<2.80.06 < Q^2 < 2.8 GeV2^2, and Bjorken xx values from 0.009 to 0.45, thus extending the knowledge of F2F_2 to low values of Q2Q^2 at low xx. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for Q2<2Q^2<2 GeV2^2 at the low and high xx-values. Down to the lowest value of Q2Q^2, the structure function is in good agreement with a parameterization of F2F_2 based on data that have been taken at much higher values of Q2Q^2 or much lower values of xx, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low xx remains well described by a logarithmic dependence on Q2Q^2 at low Q2Q^2.Comment: 3 figures, submitted pape

    Determination of the pion charge form factor for Q^2=0.60-1.60 GeV^2

    Full text link
    The data analysis for the reaction H(e,e' pi^+)n, which was used to determine values for the charged pion form factor Fpi for values of Q^2=0.6-1.6 GeV^2, has been repeated with careful inspection of all steps and special attention to systematic uncertainties. Also the method used to extract Fpi from the measured longitudinal cross section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and the extracted values of Fpi are presented.Comment: 11 pages, 6 figure

    Measurement of the Charged Pion Electromagnetic Form Factor

    Get PDF
    Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data.Comment: 5 pages, 3 figure
    corecore