554 research outputs found

    Wiretapping a hidden network

    Full text link
    We consider the problem of maximizing the probability of hitting a strategically chosen hidden virtual network by placing a wiretap on a single link of a communication network. This can be seen as a two-player win-lose (zero-sum) game that we call the wiretap game. The value of this game is the greatest probability that the wiretapper can secure for hitting the virtual network. The value is shown to equal the reciprocal of the strength of the underlying graph. We efficiently compute a unique partition of the edges of the graph, called the prime-partition, and find the set of pure strategies of the hider that are best responses against every maxmin strategy of the wiretapper. Using these special pure strategies of the hider, which we call omni-connected-spanning-subgraphs, we define a partial order on the elements of the prime-partition. From the partial order, we obtain a linear number of simple two-variable inequalities that define the maxmin-polytope, and a characterization of its extreme points. Our definition of the partial order allows us to find all equilibrium strategies of the wiretapper that minimize the number of pure best responses of the hider. Among these strategies, we efficiently compute the unique strategy that maximizes the least punishment that the hider incurs for playing a pure strategy that is not a best response. Finally, we show that this unique strategy is the nucleolus of the recently studied simple cooperative spanning connectivity game

    One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial Fourier modes

    Full text link
    We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent α\alpha of the power law is taken in the range 0≀α<10 \le \alpha <1. The oscillator frequency distribution is symmetric about its mean (taken to be zero), and is non-increasing on [0,∞)[0,\infty). In the continuum limit, the local density of oscillators evolves in time following the continuity equation that expresses the conservation of the number of oscillators of each frequency under the dynamics. This equation admits as a stationary solution the unsynchronized state uniform both in phase and over the space of the lattice. We perform a linear stability analysis of this state to show that when it is unstable, different spatial Fourier modes of fluctuations have different stability thresholds beyond which they grow exponentially in time with rates that depend on the Fourier modes. However, numerical simulations show that at long times, all the non-zero Fourier modes decay in time, while only the zero Fourier mode (i.e., the "mean-field" mode) grows in time, thereby dominating the instability process and driving the system to a synchronized state. Our theoretical analysis is supported by extensive numerical simulations.Comment: 7 pages, 4 figures. v2: new simulation results added, close to the published versio

    Back to basics: historical option pricing revisited

    Full text link
    We reconsider the problem of option pricing using historical probability distributions. We first discuss how the risk-minimisation scheme proposed recently is an adequate starting point under the realistic assumption that price increments are uncorrelated (but not necessarily independent) and of arbitrary probability density. We discuss in particular how, in the Gaussian limit, the Black-Scholes results are recovered, including the fact that the average return of the underlying stock disappears from the price (and the hedging strategy). We compare this theory to real option prices and find these reflect in a surprisingly accurate way the subtle statistical features of the underlying asset fluctuations.Comment: 14 pages, 2 .ps figures. Proceedings, to appear in Proc. Roy. So

    Statistical properties of stock order books: empirical results and models

    Full text link
    We investigate several statistical properties of the order book of three liquid stocks of the Paris Bourse. The results are to a large degree independent of the stock studied. The most interesting features concern (i) the statistics of incoming limit order prices, which follows a power-law around the current price with a diverging mean; and (ii) the humped shape of the average order book, which can be quantitatively reproduced using a `zero intelligence' numerical model, and qualitatively predicted using a simple approximation.Comment: Revised version, 10 pages, 4 .eps figures. to appear in Quantitative Financ

    On the top eigenvalue of heavy-tailed random matrices

    Full text link
    We study the statistics of the largest eigenvalue lambda_max of N x N random matrices with unit variance, but power-law distributed entries, P(M_{ij})~ |M_{ij}|^{-1-mu}. When mu > 4, lambda_max converges to 2 with Tracy-Widom fluctuations of order N^{-2/3}. When mu < 4, lambda_max is of order N^{2/mu-1/2} and is governed by Fr\'echet statistics. The marginal case mu=4 provides a new class of limiting distribution that we compute explicitely. We extend these results to sample covariance matrices, and show that extreme events may cause the largest eigenvalue to significantly exceed the Marcenko-Pastur edge. Connections with Directed Polymers are briefly discussed.Comment: 4 pages, 2 figure

    Are Financial Crashes Predictable?

    Full text link
    We critically review recent claims that financial crashes can be predicted using the idea of log-periodic oscillations or by other methods inspired by the physics of critical phenomena. In particular, the October 1997 `correction' does not appear to be the accumulation point of a geometric series of local minima.Comment: LaTeX, 5 pages + 1 postscript figur

    The Least-core and Nucleolus of Path Cooperative Games

    Full text link
    Cooperative games provide an appropriate framework for fair and stable profit distribution in multiagent systems. In this paper, we study the algorithmic issues on path cooperative games that arise from the situations where some commodity flows through a network. In these games, a coalition of edges or vertices is successful if it enables a path from the source to the sink in the network, and lose otherwise. Based on dual theory of linear programming and the relationship with flow games, we provide the characterizations on the CS-core, least-core and nucleolus of path cooperative games. Furthermore, we show that the least-core and nucleolus are polynomially solvable for path cooperative games defined on both directed and undirected network
    • 

    corecore