471 research outputs found

    MEART: The Semi-Living Artist

    Get PDF
    Here, we and others describe an unusual neurorobotic project, a merging of art and science called MEART, the semi-living artist. We built a pneumatically actuated robotic arm to create drawings, as controlled by a living network of neurons from rat cortex grown on a multi-electrode array (MEA). Such embodied cultured networks formed a real-time closed-loop system which could now behave and receive electrical stimulation as feedback on its behavior. We used MEART and simulated embodiments, or animats, to study the network mechanisms that produce adaptive, goal-directed behavior. This approach to neural interfacing will help instruct the design of other hybrid neural-robotic systems we call hybrots. The interfacing technologies and algorithms developed have potential applications in responsive deep brain stimulation systems and for motor prosthetics using sensory components. In a broader context, MEART educates the public about neuroscience, neural interfaces, and robotics. It has paved the way for critical discussions on the future of bio-art and of biotechnology

    Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme

    Get PDF
    Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning

    Pharmacodynamic Assays to Facilitate Preclinical and Clinical Development of Pre-mRNA Splicing Modulatory Drug Candidates

    Get PDF
    The spliceosome has recently emerged as a new target for cancer chemotherapy and novel antitumor spliceosome targeted agents are under development. Here, we describe two types of novel pharmacodynamic assays that facilitate drug discovery and development of this intriguing class of innovative therapeutics; the first assay is useful for preclinical optimization of small-molecule agents that target the SF3B1 spliceosomal protein in animals, the second assay is an ex vivo validated, gel-based assay for the measurement of drug exposure in human leukocytes. The first assay utilizes a highly specific bioluminescent splicing reporter, based on the skipping of exons 4-11 of a Luc-MDM2 construct, which specifically yields active luciferase when treated with small-molecule spliceosome modulators. We demonstrate that this reporter can be used to monitor alternative splicing in whole cells in vitro. We describe here that cell lines carrying the reporter can be used in vivo for the efficient pharmacodynamic analysis of agents during drug optimization and development. We also demonstrate dose- and time-dependent on-target activity of sudemycin D6 (SD6), which leads to dramatic tumor regression. The second assay relies on the treatment of freshly drawn human blood with SD6 ex vivo treatment. Changes in alternative splicing are determined by RT-PCR using genes previously identified in in vitro experiments. The Luc-MDM2 alternative splicing bioluminescent reporter and the splicing changes observed in human leukocytes should allow for the more facile translation of novel splicing modulators into clinical application

    Sudemycin E Influences Alternative Splicing and Changes Chromatin Modifications

    Get PDF
    Sudemycin E is an analog of the pre-messenger RNA splicing modulator FR901464 and its derivative spliceostatin A. Sudemycin E causes the death of cancer cells through an unknown mechanism. We found that similar to spliceostatin A, sudemycin E binds to the U2 small nuclear ribonucleoprotein (snRNP) component SF3B1. Native chromatin immunoprecipitations showed that U2 snRNPs physically interact with nucleosomes. Sudemycin E induces a dissociation of the U2 snRNPs and decreases their interaction with nucleosomes. To determine the effect on gene expression, we performed genome-wide array analysis. Sudemycin E first causes a rapid change in alternative pre-messenger RNA splicing, which is later followed by changes in overall gene expression and arrest in the G2 phase of the cell cycle. The changes in alternative exon usage correlate with a loss of the H3K36me3 modification in chromatin encoding these exons. We propose that sudemycin E interferes with the ability of U2 snRNP to maintain an H3K36me3 modification in actively transcribed genes. Thus, in addition to the reversible changes in alternative splicing, sudemycin E causes changes in chromatin modifications that result in chromatin condensation, which is a likely contributing factor to cancer cell death

    Nanoparticles Containing Anti-inflammatory Agents as Chemotherapy Adjuvants II: Role of Plasma Esterases in Drug Release

    Get PDF
    The pre-administration of the anti-inflammatory drugs dexamethasone (DEX) and cortisone acetate reduces toxicity and enhances efficacy of anticancer agents in murine models and in human clinical trials (1–5). We previously reported on the formulation of the lipophilic dexamethasone palmitate ester (DEX-P) in nanoparticles (NPs) employing a microemulsion template engineering technique to achieve tumor-specific delivery of dexamethasone (6). The nanoparticles exhibited significantly enhanced stealth properties as indicated by reduced macrophage uptake and decreased adsorption of opsonin proteins in in vitro assays (6). Unexpectedly, preliminary biodistribution studies of NPs containing [3H]-DEX-P in tumor-bearing mice showed that the radiolabel was cleared from the circulation rapidly and exhibited high liver uptake. Our previous in vitro release studies demonstrated that rapid release of the radiolabel from the NPs was observed when 10% mouse plasma was used as the medium, while nominal release was observed in phosphate-buffered saline (PBS) buffer (6). Esterolysis of NP-associated DEX-P was presumed to be the main cause for the rapid drug release in plasma, as most of the released radioactivity was in the form of DEX and not DEX-P. High degradation rates of ester prodrugs in rodent plasma has been attributed to increased esterase activity, while only minimal degradation in human plasma has been observed (7–9). Based on our observation of the release of [3H]-DEX from NPs in mouse plasma, we studied the release of DEX from nanoparticles in various plasma sources as a guide for the design of future in vivo experiments
    corecore