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Abstract
Space penetrators are a potential method of inserting instrumentation onto ice-covered bodies in the solar system. Part of 
a study to see whether this is feasible involves numerically simulating impact of the penetrator into ice at impact velocities 
of a few 100 m/s. In order to do this accurately, it is necessary to have a constitutive model for water ice that is valid at the 
strain rates and temperatures relevant to impact in the Outer Solar System. This paper reports certain issues and difficulties 
that arose during a study to obtain this data.

Introduction

Space penetrators have been suggested as a cost-effective 
method of placing instrumentation on an icy body in the 
Outer Solar System such as Europa [1–3]. Such probes 
would also be lighter and mechanically simpler than reverse-
thruster landers and produce much less contamination of the 
surface it is desired to study [4].

Although there have been a number of published stud-
ies on hypervelocity impact and shock studies of ice [5–11] 
performed so as to understand what happens in the Solar 
System on a regular basis without human involvement, bal-
listic impact on ice targets at more modest impact velocities 
(100 m/s) has been comparatively little studied [12–18]. In 
order to design a space probe capable of surviving impact 
on Europa, it is necessary to know the mechanical properties 
of water–ice at the appropriate strain rate and temperature. 
This investigation was therefore performed in order to build 
upon the existing body of literature on water ice at high 
strain rates (Fig. 1, 2, 3) [19–26].

Water ice is a material with a wide range of properties 
[30, 31]. Indeed, Carney et al. say it should be regarded as a 
class of materials rather than as one specific material [19]. 
At the fundamental level, pure water ice exists in seventeen 

known crystalline forms [31] (Fig. 4). In the world outside 
the laboratory, the way a body of ice forms introduces many 
other complications such as solutes [32, 33], gases [34, 
35] and solid matter (dirt) [36–38]. Such contaminants are 
known to have an effect on the compressive strength of ice 
[39–43].

Intrinsic factors that need to be considered when prepar-
ing ice specimens for mechanical testing include porosity, 
salinity, temperature, grain size and orientation. Extrinsic 
factors include rate of loading, confinement conditions, 
direction of loading relative to crystallographic axis, sam-
ple size and preparation method. In this study we restricted 
ourselves to investigating pure water ice on the grounds that 
it is the easiest form of ice to make chemically and mechani-
cally reproducible specimens from. Also if a probe can be 
designed to withstand impact on pure ice, it is likely to be 
able to survive impact on the damaged and impure ice that 
likely exists on the surface of Europa.

Optical measurements of the surface temperature of 
Europa give values between 86 and 132 K, depending on the 
latitude and time of day [44, 45]. The atmospheric surface 
pressure is believed to be ≈ 1 × 10−6 Pa [46, 47]. Thus the 
stable phase of ice would be I, which exists in both hexago-
nal (Ih) and cubic (Ic) forms.

In order to obtain mechanical data on the right sort of 
ice, it is necessary to give some thought as to what state 
the uppermost few metres of ice on Europa is likely to be 
in [48]. It has been suggested that, due to amorphization 
caused by radiation (and other processes), amorphous ice 
will continuously form on the upper surface, which will 
then slowly crystallize to ice Ic at temperatures typical 
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of Europa within 10 years, and to ice Ih within 20 years 
[49–55]. A balance between crystallization and amorphi-
zation rates will likely result in amorphous water ice form-
ing on the surface with crystalline ice at sub-millimetre 
depths [48]. However, optical and radar measurements 
have shown that the grain size of ice on Europa is in the 
region 25–200 µm [45, 56], that the ice is highly fractured 
[57], and that the most likely phase of ice at the surface 
of Europa is Ih [49, 51], which is also the main form of 
terrestrial sea ice [45]. As the target penetration depth will 
likely be between 1 and 2 m, the effects of a millimetre or 
so of amorphous ice on penetration can be ignored. The 
main chemical contaminants are believed to be sulphuric 
acid and various salts [58].

Specimen Preparation

In order to obtain high-quality mechanical data for ice, 
care must be taken over specimen preparation. There are 
three main problems associated with freezing water: (i) 
ice nucleation takes place preferentially from the surfaces 
of any container the water is in thereby producing a non-
uniform grain structure; (ii) since ice expands on freezing, 
ice specimens often contain locked-in stresses which can 
cause spontaneous fracture; (iii) ice is a poorer solvent 
for air and salts than water resulting in bubbles and brine 

Fig. 1  Schematic diagram of the effect of strain rate on the compres-
sive stress–strain curve for water ice. From [27]

Fig. 2  High rate stress–strain curves for single crystal ice at −10 °C 
obtained using an SHPB. From [21]

Fig. 3  Plot of peak stress versus strain rate for water ices of various 
purities loaded in various ways. Figure from [25]. References referred 
to in the figure: [21, 28, 29] (reference for Carter et al. 1997 omitted 
from [25])

Fig. 4  Recent phase diagram of water ice. From [31]
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inclusions. We therefore decided to expedite the process of 
specimen manufacture by buying in ice from commercial 
suppliers who have long experience of making high qual-
ity ice for ice sculptures. Such companies make ice using 
de-ionised water. As a result, the ice they make is clear 
and free of imperfections (Fig. 5). However, as can also be 
seen from Fig. 5, they were not able to produce the small 
specimens (10 mm diameter, 5 mm thick cylinders) that 
we needed for Hopkinson bar tests. So we had to develop 
our own low temperature (263 K) machining capability 
(consisting of a circular saw, a micro lathe and a lapping 
set-up) so as to be able to make specimens from the larger 
blocks that Ice Sculptures Ltd. are able to make.

We assessed the porosity of the specimens by (i) measur-
ing their density which we found to be 897.7 kg m−3 (litera-
ture value 916.7 kg m−3) and (ii) the velocity of ultrasound 
(measured in two different directions) for a rectangular 
block of ice of dimensions 110 mm × 110 mm × 200 mm 
(Fig. 6). The two values obtained were 3760 ± 170 m s−1 and 
3760 ± 70 m s−1 (literature values for single crystal ice lie in 
the range 3700–4030 m s−1 [59, 60]). The ice can therefore 
also be assumed to be isotropic.

Experimental

Split Hopkinson Pressure Bar

The high strain rate properties were determined using our 
split Hopkinson pressure bar (SHPB). The Cavendish SHPB 
system consists of 12.7 mm diameter, 800 mm long bars 
made from a number of different materials (Table 1). Acous-
tic impedance matching is critical for SHPB in order for 
strong transmission of the loading pulse, as well as allow-
ing the sample to reach force equilibrium faster, providing 
results that are valid over a wider range of strains. Although 
our magnesium alloy bars have the closest acoustic imped-
ance to that of ice [61], magnesium’s high thermal con-
ductivity would make control of the specimen temperature 

Fig. 5  10 mm diameter specimen provided by Ice Sculptures Ltd

Fig. 6  Plots of distance travelled versus transit time for ultrasound in 
rectangular blocks of ice of various sizes. a Short axis. b Long axis

Fig. 7  Plot of the thermal conductivity of pure water ice as a function 
of temperature. From [62]. Bibliographic information on the publi-
cations referred to in the graph: Dillard & Timmerhaus (1969) [63]; 
Ratcliffe (1962) [64]; Slack (1980) [65]
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problematic. For that reason we decided to use our Ti6Al4 V 
bars in these experiments.

The bars are instrumented with Kulite AFP 500-90 
semiconductor strain gauges that are electrically part of a 
potential divider held at a constant voltage. Two gauges are 
mounted in series using a slow-curing epoxy on opposite 
sides of the bars in order both to double the size of the sig-
nal for a given force and also to check for possible bending 
waves due to impact misalignment. Calibration of the strain 
gauge/divider system was performed at room temperature 
according to the procedure described by Siviour [66]. The 
time-resolution tres of the gauges is given by:

where lgauge is the length of the gauge (1.5 mm) and cbar is 
the elastic wave speed in the bar (4840 m/s). Substituting 
these values in Eq. (1) gives a time resolution of 0.315 µs.

The basic theory of the SHPB has been presented in many 
publications (e.g. [67–69]), so the derivation of the equa-
tions that follow will not be repeated here. The result of 
an analysis of the interaction of the elastic pulse with the 
specimen gives the following equations for the engineering 
stress s(t) and engineering strain rate ė(t):

where FT(t) is the force transmitted into the output bar, A0 
is the original cross-sectional area of the specimen, FR(t) is 
the force reflected from the specimen back into the input bar, 
l0 is the original thickness of the specimen, Ab is the cross-
sectional area of the bar, and Zb is the mechanical impedance 
of the material the bars are made from. The engineering 
stress and strain rate can be converted into true stress and 

(1)tres =
lgauge

cbar

(2)s(t) =
FT (t)

A0

(3)ė(t) =
−2

l0AbZb
FR(t)

true strain rate assuming the volume of the specimen does 
not change during deformation [70]. However, since ice is 
a brittle material we did not perform this conversion as the 
failure strain was sufficiently small that the values of the two 
stress and strain measures are the same to well within 1%.

Before performing experiments, the alignment of the bar 
system was checked to ensure the bars were coaxial. This was 
done by sending an elastic pulse through the system with no 
specimen present. The system can be considered aligned when 
reflection from the input bar-output bar interface is minimal. 
Good alignment is important when testing a brittle material 
such as ice as departure from the assumed 1D stress condition 
could lead to premature fracture.

There are several requirements for classic SHPB theory to 
hold so as to ensure valid experiments [67–69]:

(a) The forces on the front and back of the specimen are 
equal.

(b) Dispersion of the elastic waves propagating along the 
rods can be neglected.

(c) Inertial forces within the specimen are negligible.
(d) Friction at the specimen/bar interface is negligible.
(e) Stress waves reflected from the bar ends do not overlap 

the input and output waves at the position of the strain 
gauges.

(f) The stress wave at the bar surface is the same as that 
within the bar.

These conditions were achieved as follows:
(a) Previous studies showed that it takes from between 

3–4 reflections of elastic waves within a specimen to achieve 
force equilibrium [71–73]. So at least this amount of time 
must elapse before the stress–strain curves calculated from 
the recorded strain gauge data can be regarded as accurate. 
One way of achieving this is to increase the rise time of the 
loading pulse by placing a piece of copper shim on the impact 
end of the input bar (Fig. 8) [24, 25, 74–77]. We used colloidal 
graphite lubricant paste to attach the shim to the bar end.

A check was made on the time taken to reach force equilib-
rium using the one-wave/two-wave analysis recommended by 
Gray III [67] when pulse-shaping was used. Force equilibrium 
was found to occur in the ice specimens after about 10 µs (see 
Fig. 9). The one-wave analysis uses the force transmitted into 
the output bar in order to calculate the stress in the specimen, 
whereas the two-wave analysis uses the sum of the incident 
and reflected waves to do the calculation. If the results of the 
two analyses are the same, then force equilibrium has been 
achieved. To assess this, we used the normalised stress differ-
ence R(t) between the two specimen/bar interfaces calculated 
using:

(4)R(t) =
Δs(t)

s̄(t)

Table 1  Summary of the acoustic impedances and thermal conductiv-
ity of low impedance metal alloys that were considered as Hopkinson 
bar materials for this study

The same properties of ice are also given
* Value taken from the graph published in [62] (see also Fig. 7)

Material Impedance/kgm−2s−1 Thermal 
conductivity/
Wm−1K−1

Ti6Al4 V 21.4 × 106 6.7
Dural 13.0 × 106 147
Magnesium AZM 8.8 × 106 85
Sculpture ice (233 K) 3.4 × 106 ca.  3*



202 Journal of Dynamic Behavior of Materials (2019) 5:198–211

1 3

Specimens are taken to be in equilibrium when 
R(t) ≤ 5%. Figure 10 shows that this state occurs between 
4–6 wave passes and is achieved more quickly for a ramped 
pulse than for a top-hat pulse.

(b) Classic SHPB theory assumes the Hopkinson bar 
behaves as a one-dimensional, nondispersive waveguide 
[67]. In reality the bars are three-dimensional objects 
and hence sound waves of different frequencies travel at 
different speeds [78]. Pulse-shaping the input pulse both 
increases the rise time (and hence the time to reach peak 
stress) and reduces the effects of dispersion in the bars 
(see Fig. 8) [74, 79, 80] thus mitigating the effect of rapid 
changes in the force applied to the ice specimens (Fig. 9b), 
something of particular importance for brittle materials 
[75, 81]. The pieces of copper shim were made slightly 
larger than the bar diameter so that the copper that had 
been work-hardened by the punching process used to 
manufacture them did not participate in the pulse-shaping 
process (Fig. 11).

(c) During a high rate test, the material of which the 
specimen is made has to be accelerated from rest. This 
process generates inertial stresses that add to the measured 
stress. The fullest derivation of the magnitude of the extra 
stress on the output end of the specimen is that of Gorham 
and co-workers [82–84]:

where �m is the measured and �a is the actual stress in the 
sample, h is the specimen thickness, a is the specimen 
radius, and ν is the velocity of the output end of the speci-
men. An estimate of the error due to inertia for each sample 
was calculated using Eq. (5). The maximum value was found 
to be 3.0% (with the majority less than 1%). We therefore 

(5)𝜎m − 𝜎a = 𝜌

(

h2

6
−

a2

8

)

�̈� + 𝜌

(

a2

16
−

h2

6

)

�̇�2 −
𝜌hv̇

2

decided to neglect inertial stresses rather than attempt to 
correct the results.

(d) An additional source of stress is friction between the 
surfaces of the specimen and the ends of the bars [71, 84]. 
Its effect on the measured stress �m is given by:

where �spec is the stress that would be supported by the speci-
men in the case of zero friction, µ is the coefficient of fric-
tion between the specimen and the bars, d is the specimen 

(6)�m = �spec

(

1 +
�d

nl

)

Fig. 8  A comparison between input (loading) pulses with and without 
pulse shaping

Fig. 9  One-wave and two-wave analyses of data for ice obtained a 
without and b with pulse shaping of the input pulse
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diameter, n is a number whose value depends on the yield 
criterion for the material being studied, and l is the specimen 
thickness. Equation (6) shows that there are two possible 
ways of obtaining �spec : (i) measure µ under the conditions 
of the test being used, or (ii) reduce µ to a very low value 
(ideally zero) using lubrication [84]. Two main ways have 
been developed for measuring µ in a compression test: (a) 
perform tests on specimens of different l/d ratios, or (b) 
perform tests on annular specimens and determine how the 
ratio of inner to outer diameter develops with time [85]. 
Both methods would involve making a large number of non-
standard specimens. The second (annular) method would 
also involve using high-speed photography and performing 
the test between transparent anvils (such as glass) which 
will almost certainly have a different frictional interaction 
with the ice. The first method (different aspect ratios) has 
the disadvantage that although friction has less effect on 
the measured stress if the cylinder has a large l/d ratio, even 
ductile materials are more prone to shear failure if this ratio 
is large [86]. Note that although in everyday life we experi-
ence ice as being slippery and hence we think of it as being 
a low-friction material, this is largely due to the existence of 
a film of water on the surface which is present either intrinsi-
cally or because of heating produced by sliding [87–106]. 
At the very low temperatures of interest in this study, such 
a film of water will not be present and so friction must be 
reduced using lubrication. We found that silicone grease is a 
suitable lubricant for the temperatures at which these experi-
ments on ice were conducted. This is because it does not 
alter the mechanical properties of ice and also because the 
manufacturer claims it maintains its lubricating properties 
down to 223 K. A previous study showed that no significant 
difference was observed in the stress–strain response of ice 
between specimens that were frozen onto the bar and those 
that were lubricated [21]. However, we found that at 223 K 
that ‘frozen on’ specimens were significantly stronger than 

those that were lubricated, perhaps due to the development 
of a triaxial stress state in the ice. Also tests performed tem-
peratures lower than 198 K showed that the silicone grease 
exhibited a marked increase in viscosity [107]. Thus tests 
performed at 173 K and below were lubricated using PTFE 
dry lubricant spray.

(e) Ensuring overlap between the forward and backward 
travelling elastic waves does not occur within the SHPB can 
be achieved by careful attention to the lengths of the various 

Fig. 10  Comparison of the time to force equilibrium for a ramp-
shaped pulse and a ‘top-hat’ pulse

Fig. 11  Plots showing the effect of the dimensions of the copper shim 
used as a pulse shaper. a Thickness 0.61  mm, diameter 3.1  mm. b 
Thickness 0.18 mm, diameter 10.0 mm. Two shots are shown in each 
graph to demonstrate repeatability
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bars in the system. The temporal duration of the incident 
pulse is equal to two wave transit times in the striker bar. In 
practice the input pulse has a longer duration than this due 
to dispersion. So if the striker and input bars are made of the 
same material, wave overlap can be avoided if the striker is 
less than half the length of the input bar. Since in our system 
the input and output bars used are approximately 800 mm 
long and the striker bar used was 144 mm long, the required 
condition is satisfied.

(f) Uniformity of the stress within the elastic pulses at 
the position of the strain gauges occurs because St. Venant’s 
principle (which states that the details of the load distri-
bution on the loading surface do not matter as long as the 
stress is measured sufficiently far from that surface) can 
be extended to dynamic loading [108, 109]. Gorham et al. 
found that the strain gauges should be at least 10 bar diam-
eters from the end of the bars [83]. This condition was more 
than satisfied for the 12.7 mm diameter bars used in this 
investigation by attaching the strain gauges 250 mm away 
from the specimen position.

Temperature

The ends of the SHPB bars were enclosed in an environ-
mental chamber that was kept cold using dry nitrogen gas 
that was cooled by passing it through a coiled copper pipe 
immersed in liquid nitrogen. The chamber is made from Tef-
lon and has a sliding fit to the bars so as to ensure contain-
ment of the cold nitrogen gas, while at the same time putting 
minimal lateral mechanical constraint on the bars. The tem-
perature of the environmental chamber was monitored using 
thermocouples and this information was used to control the 
power output of an in-line heating element (Omega gas 
heater, part number AHP-7562) so that the temperature of 
the nitrogen flowing into the chamber remained constant and 
at the value required for a given experiment (see Fig. 12).

As shown in Table 1, Ti6Al4 V bars were chosen for this 
study because of their low thermal conductivity. However, 
thermal contraction and thermal gradients are also an issue. 

Thermal contraction was allowed for by making the holes in 
the ends of the environmental chamber of a diameter such 
that the cold gas within the chamber will still satisfactorily 
be contained down to a temperature of 173 K. Concerning 
thermal gradients, Kishida et al. showed that their effect on 
the mechanical impedance of steel rods (and hence on elastic 
pulse propagation) can be neglected in the temperature range 
4–570 K [110].

We performed a simple experiment to see whether this 
was true for our bar system. The experiments consisted of 
placing the end of the Ti6Al4 V input bar inside the environ-
mental chamber kept at 175 K. Figure 13 compares a pulse 
so obtained with one where the whole bar was at ambient 
temperature (295 K), the striker velocities being the same 
to within 0.4%. As the height of the incident pulses are the 
same we may conclude that the responses of the gauges are 
unaffected by cooling the end of the bars. The temperature 
at the gauges during the cold test was measured as being 
292 K, which is within the range of ambient temperatures 
in the laboratory.

Fig. 12  Schematic diagram of the temperature control system used to 
regulate the temperature in an environmental chamber enclosing the 
ends of our SHPB used for obtaining mechanical data at high rates 

of strain. The same system was also used to enclose the anvils in an 
Instron mechanical testing machine for low strain rate tests

Fig. 13  A plot comparing a stress pulse in the input bar (measured 
using strain gauges at a temperature of 292 K) when one end of the 
bar was cooled to 175 K (orange line) with a stress pulse in the input 
bar when the whole bar was at 295 K (blue line). The velocity of the 
striker bar was 5.49 m/s for the 295 K experiment and 5.51 m/s for 
the 175 K test (Color figure online)
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One noticeable difference between the pulses is that there 
is some decrease in transit time of the pulse in the cooled 
bar. This is because the stiffness of a material, and thus the 
sound speed, depends on temperature. A change in stiffness 
could also cause distortion of the strain pulse near the speci-
men or even some reflection of elastic wave energy. How-
ever, no reflection of elastic waves from the cold section was 
observed, suggesting that cooling a section of the bars will 
not affect the experimental results. The potential dividers 
have also been designed such that the system is robust to 
temperature changes at the gauges [66].

The above checks having been made, we were confident 
that the data obtained from the strain gauges could be ana-
lysed using standard SHPB analysis [67].

Ice Specimens

As may be seen from Fig. 14, the grain size of the ice is 
comparable to the size of the specimens. In order to achieve 
consistency in the data, as far as possible only single crystal 
samples were used. However, the crystallographic orienta-
tion of the cylindrical specimens was not determined. One 
possible way of doing this without using X-rays would be 

to measure the through-thickness sound speeds of both lon-
gitudinal and transverse waves since their values depend on 
the angle of the direction of measurement with the c-axis 
(Fig. 15).

Another problem in conducting these experiments is 
the thermal expansion and contraction of the ice as the 

Fig. 14  Cross-polar photo-
graphs of some of our 10 mm 
diameter, 5 mm thick ice cylin-
ders. a Polycrystalline specimen 
formed by lapping and turning. 
b Two-crystal specimen formed 
by turning only. c Single-crystal 
specimen formed by turning 
only

Fig. 15  Plot of the dependence of the longitudinal and transverse 
(shear) sound speeds for ice as a function of angle between the direc-
tion of measurement and the c-axis. Data obtained from [59, 111]
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temperature is changed. The dimensions of the specimens 
were measured at 258 K using a micrometer but were then 
tested at greater or lower temperatures. The calculated per-
centage change in length as the temperature is lowered from 
263 to 173 K can be seen in Fig. 16. This graph was gener-
ated using published values for the ice unit cell volumes 
at different temperatures [112]. The length change can be 
significant being, for example, −0.417 ± 0.027% at 173 K. 
Thermal expansion/contraction was incorporated into the 
analysis as we found that failure occurred at strains of 
around 1%.

Another problem caused by length change in the speci-
mens when the temperature is reduced is loss of contact 
with one of the bars. The loss of contact can be observed 
in the experimental results by the apparent attainment of 
large strains under little to no stress (Fig. 17). A more seri-
ous problem is that until the specimen is in contact with 
both bars, the end of the input bar is a free surface so that 
the incoming input wave will be reflected and the specimen 
will initially not be loaded by a ramped loading pulse. This 
could cause early failure for the reasons discussed earlier. It 
is therefore important that the bars are pushed together just 
before testing to ensure good sample-bar contact.

Low Rate Testing

The compressive strengths of ice at low strain rates were 
measured using an Instron mechanical testing machine. A 
large quantity of low rate data exists for ice, so performing 
low-rate experiments makes possible a comparison of our ice 

with those reported in the literature. Low-rate experiments 
are also needed for a full constitutive description such as 
Johnson-Holmquist, one of the best devised so far for brittle 
materials [113–115].

Photographs of the experimental set-up are shown in 
Fig. 18. The force was applied to the specimen through a rod 
connected to the load-cell located in the cross-head. Silicone 
grease was used as a lubricant between the anvils and the 
ice. The separation of the anvils was directly measured using 
clip-gauges. The gauges were calibrated at room temperature 
and then connected to the anvils before cooling to eliminate 
any offset from thermal contraction.

Since ice is a brittle material, care was taken to ensure 
that the anvils were both flat and parallel to each other so 
as to avoid non-uniform loading which is known to produce 
premature failure [116]. Alignment and parallelism was 
ensured using epoxy resin to glue the anvils in place while 
under compression.

For cryogenic testing, the same temperature control sys-
tem was used as in the SHPB tests. As can be seen in Fig. 18, 
an expanded polystyrene box was placed around the anvils 
to form an environmental chamber. The anvils were also 
thermally isolated from the Instron machine using Macor (a 
machinable glass–ceramic obtainable from Corning). The 
temperatures of the anvils and gas were measured using ther-
mocouples and an average value was calculated. The speci-
men dimensions were the same as those used in the SHPB 
tests. The time required for the ice specimens to thermally 
equilibrate was calculated by simulation.

Results

Figure 19 presents all the data we obtained for the engineer-
ing peak stress speak supported by ice at three different strain 
rates within the range  10−3 to  10+3 s−1 and at temperatures 

Fig. 16  The percentage length change of a specimen initially meas-
ured at 263 K as the temperature is lowered to 173 K

Fig. 17  An example of a calculated stress–strain curve for ice in 
which contact with one of the bars had been lost before the test due to 
thermal contraction
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ranging from 148 to 263 K. As mentioned earlier in this 
article, engineering stress s and strain e were used since ice, 
being a brittle material, can only support a small strain (the 
difference between true and engineering strains is negligible 
for small deformations [70]).

Figure 20 presents typical engineering stress–strain and 
engineering strain-rate curves for ice tested in our SHPB 
at 223 K. The initial dotted line indicates where the speci-
men was not in stress equilibrium. The ice then undergoes 
a roughly linear-elastic rise until the peak stress speak and 
failure strain efail are reached. The peak stress at this tem-
perature lay in the range 38 ± 18 MPa and the failure strain 
in the range 0.012 ± 0.005.

Conclusions and Suggestions for Future 
Research

Techniques have been developed for preparing small cylin-
drical specimens (10 mm diameter, 5 mm thick) from blocks 
of pure water–ice supplied by a commercial company. These 
specimens were used to obtain data on the low rate  (10−3 and 
 10−1 s−1) and high rate  (10+3 s−1) compressive stress–strain 
response of single crystal ice at temperatures in the range 
148 to 263 K. The data obtained will be used to parameterise 
the Johnson-Holmquist constitutive model for ice and this 
will be reported in more detail in a future paper. The ice at 
the surface of Europa is likely to be weaker than pure ice 
at a given temperature. These techniques and the resulting 
data are vital in derisking any future penetrator missions to 
Europa by improving the simulation capability of the impact.

In order to perform these tests, a temperature control 
system and environmental chambers were developed for 
our split Hopkinson pressure bar (SHPB) and Instron 
mechanical testing machines. Copper shim was used to 

Fig. 18  The experimental set-up for low rate testing. The Instron 
has been modified for low-temperature testing using by placing an 
environmental chamber around the anvils. The load cell measures 
the force through the anvils. Clip gauges can be seen attached to the 
anvils in order to measure their separation

Fig. 19  Plot of the peak stress obtained quasistatically and at Hopkin-
son bar rates of strain for ice at various ambient temperatures

Fig. 20  Plot showing a typical engineering stress–strain curve (blue 
line) and the corresponding engineering strain rate (orange line) for 
ice tested at 223 K in our SHPB. The solid line indicates the section 
of the curves where the specimen was intact and in stress equilibrium 
(Color figure online)
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ramp the loading pulses in our SHPB so as to reduce the 
rate at which the strain-rate applied to our brittle ice speci-
mens increased.

The Instron tests showed no difference between the peak 
engineering stresses at strain rates in the range  10−3 to 
 10−1 s−1, the average value for speak across all experiments 
being 35 ± 19 MPa. It was also observed that the strength 
of ice increased as the temperature was reduced from 263 
to 173 K. For the whole set of SHPB experiments (230 to 
1660 s−1), the average engineering peak stress was found 
to be 38 ± 18 MPa.

Lubrication with silicone grease was shown to reduce 
the measured peak stress, but silicone grease only works 
as a lubricant down to around 173 K. Powdered PTFE was 
used at temperatures lower than this.

The results indicate that there is no significant differ-
ence in strength between polycrystalline and single crystal 
specimens. However, the crystal orientation was not deter-
mined. At quasistatic rates the strength of single crystal 
ice has been found to depend on orientation [117]. So it 
is recommended that future SHPB studies should aim to 
account for the microstructure of ice specimens, through 
the development of an ice growth capability and the use 
of an automatic fabric analyzer.

Also in any future tests the effect of specimen-bar con-
tact should be carefully accounted for. Furthermore, the 
systematic differences between the peak stresses obtained 
by specimens loaded using pulses of different magnitudes 
should be investigated further. It would also be interest-
ing to utilize the results obtained in the current work for 
simulation development.

To further de-risk a possible penetrator mission, studies 
at lower temperatures on briny and damaged ices should be 
undertaken in order to study conditions more representa-
tive of Europa.

In conclusion, the results presented in this paper should 
be of interest to computational groups looking to model 
ice impact as it will allow for the parameterisation of some 
of the more common constitutive models that are avail-
able. However, care should be taken to include a statistical 
failure or yield criterion that can account for some of the 
variation in the data available, particularly if the model is 
of a small-scale system. Additionally, if models are being 
made from a more fundamental bottom up approach in 
order to replicate experimental data, care should be taken 
around parameters such as grain shape and orientation as 
well as interfacial friction.

Acknowledgements Gratitude is expressed to David Page-Croft of the 
Department of Applied Mathematics and Theoretical Physics, Univer-
sity of Cambridge for his assistance during the use of their cold room 
for sample preparation. We also thank QinetiQ plc for funding through 
the IRAD programme.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

 1. Weiss P, Yung KL, Kömle N, Ko SM, Kaufmann E, Kargl G 
(2011) Thermal drill sampling system onboard high-velocity 
impactors for exploring the subsurfaces of Europa. Adv Space 
Res 48:743–754

 2. Wurz P, Lasi D, Thomas N, Piazza D, Galli A, Jutzi M, Bara-
bash S, Wieser M, Magnes W, Lammer H, Auster U, Gurvits 
LI, Hajdas W (2017) An impacting descent probe for Europa 
and the other Galilean moons of Jupiter. Earth Moon Planets 
120:113–146

 3. Winglee RM, Robinson T, Danner M, Koch J (2018) Cryo-
braking using penetrators for enhanced capabilities for the 
potential landing of payloads on icy solar system objects. Acta 
Astronaut 144:136–146

 4. White C, Scanlon TJ, Merrifield JA, Kontis K, Langener T, 
Alves J (2016) Numerical and experimental capabilities for 
studying rocket plume-regolith interactions. AIP Conf Proc 
1786:170003

 5. Stewart ST, Ahrens TJ (2003) Shock hugoniot of  H2O ice. 
Geophys Res Lett. https ://doi.org/10.1029/2002g l0167 89

 6. Stewart ST, Ahrens TJ (2005) Shock properties of  H2O ice. J 
Geophys Res 110:E03005

 7. Stewart ST, Seifter A, Obst AW (2008) Shocked water ice: 
thermal emission measurements and the criteria for phase 
changes during impact events. Geophys Res Lett 35:L23203

 8. Kraus RG, Stewart ST, Seifter A, Obst AW (2010) Shock and 
post-shock temperatures in an ice-quartz mixture: implications 
for melting during planetary impact events. Earth Planet Sci 
Lett 289:162–170

 9. Kraus RG, Senft LE, Stewart ST (2011) Impacts onto  H2O ice: 
scaling laws for melting, vaporization, excavation, and final 
crater size. Icarus 214:724–738

 10. Senft LE, Stewart ST (2011) Modeling the morphological 
diversity of impact craters on icy satellites. Icarus 214:67–81

 11. Orlov MY, Orlova Y, Bogomolov G, Glazyrin V (2017) 
Research of the behavior of ice on water under explosive loads. 
J Phys: Conf Ser 919:012006

 12. Ross B (1969) Perforation of Arctic sea-ice cover by projectile 
impact. J Hydronautics 3:115–120

 13. Ross B, Hanagud S, Sidhu G (1971). Penetration studies of ice 
with application to arctic and subarctic warfare. Naval Ord-
nance Laboratory, Silver Spring, MD, Report no. AD0736633

 14. Young CW (1974) Penetration of sea ice by air-dropped pro-
jectiles. Proc IEEE International Conference on Engineering 
in the ocean environment, vol 1. IEEE, New York, pp 89–95

 15. Aitken GW, Swinzow GK, Farrell DR (1976) Projectile and 
fragment penetration in snow and frozen soil. US Army Cold 
Regions Research and Engineering Laboratory, Hanover

 16. Aitken GW (1978). Terminal ballistics in cold regions materi-
als. In: Proc 4th Int Symp on Ballistics. Arlington VA: Ameri-
can Defence Preparedness Association. Session 6, paper 6

 17. Lange MA, Ahrens TJ (1982) Fragmentation of ice by low 
velocity impact. Proc 12th Lunar and Planetary Science Conf. 
Pergamon, Oxford, pp 1667–1687

 18. Young CW (1997). Penetration equations. Sandia National 
Laboratory, Albuquerque, NM, Report no. SAND97-2426

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1029/2002gl016789


209Journal of Dynamic Behavior of Materials (2019) 5:198–211 

1 3

 19. Carney KS, Benson DJ, DuBois P, Lee R (2006) A phenomeno-
logical high strain rate model with failure for ice. Int J Solids 
Structures 43:7820–7839

 20. Kim H, Keune JN (2007) Compressive strength of ice at impact 
strain rates. J Mater Sci 42:2802–2806

 21. Shazly M, Prakash V, Lerch BA (2009) High strain rate 
behavior of ice under uniaxial compression. Int J Solids 
Structures 46:1499–1515

 22. Combescure A, Chuzel-Marmot Y, Fabis J (2011) Experimental 
study of high-velocity impact and fracture of ice. Int J Solids 
Structures 48:2779–2790

 23. Bragov A, Igumnov L, Konstantinov A, Lomunov A, Filippov 
A, Shmotin Y, Didenko R, Krundaeva A (2015) Investigation of 
strength properties of freshwater ice. EPJ Web Conf 94:01070

 24. Wu XQ, Prakash V (2015) Dynamic compressive behavior of ice 
at cryogenic temperatures. Cold Regions Sci Technol 118:1–13

 25. Wu XQ, Prakash V (2015) Dynamic strength of distilled 
water and lake water ice at high strain rates. Int J Impact Eng 
76:155–165

 26. Church P, Lewtas I, Gould P, Braithwaite C, Jardine A (2016) 
Development and validation of high strain rate model for water 
ice. In: Woodley C, Cullis I (eds) Proc 29th Int Symp on Bal-
listics. Lancaster, PA, DesTech, pp 1977–1988

 27. Schulson EM (2001) Brittle failure of ice. Engng Fract Mech 
68:1839–1887

 28. Schulson EM, Iliescu D, Fortt A (2005). Characterization of ice 
for return-to-flight of the Space Shuttle. 1: Hard ice. National 
Aeronautics and Space Administration, Washington DC, Report 
no. CR-2005-213643/Part 1

 29. Jones SJ (1997) High strain-rate compression tests on ice. J Phys 
Chem B 101:6099–6101

 30. Cheng BQ, Engel EA, Behler J, Dellago C, Ceriotti M (2019) 
Ab initio thermodynamics of liquid and solid water. Proc Nat 
Acad Sci USA 116:1110–1115

 31. Salzmann CG (2019) Advances in the experimental exploration 
of water’s phase diagram. J Chem Phys 150:060901

 32. Medjani K (1996) Numerical simulation of the formation of brine 
pockets during the freezing of the NaCl-H2O compound from 
above. Int Commun Heat Mass Transfer 23:917–928

 33. Wells AJ, Wettlaufer JS, Orszag SA (2011) Brine fluxes from 
growing sea ice. Geophys Res Lett 38:L04501

 34. Wei PS, Huang CC, Lee KW (2003) Nucleation of bubbles on a 
solidification front: experiment and analysis. Metall Mater Trans 
B 34:321–332

 35. Yoshimura K, Inada T, Koyama S (2008) Growth of spherical 
and cylindrical oxygen bubbles at an ice-water interface. Cryst 
Growth Design 8:2108–2115

 36. Hooke RL, Dahlin BB, Kauper MT (1972) Creep of ice contain-
ing dispersed fine sand. J Glaciol 11:327–336

 37. Park JH, Lee JS (2014) Characteristics of elastic waves in sand-
silt mixtures due to freezing. Cold Regions Sci Technol 99:1–11

 38. Gundlach B, Schmidt KP, Kreuzig C, Bischoff D, Rezaei F, 
Kothe S, Blum J, Grzesik B, Stoll E (2018) The tensile strength 
of ice and dust aggregates and its dependence on particle proper-
ties. Mon Not Royal Astron Soc 479:1273–1277

 39. Moslet PO (2007) Field testing of uniaxial compression strength 
of columnar sea ice. Cold Regions Sci Technol 48:1–14

 40. Timco GW, Weeks WF (2010) A review of the engineering prop-
erties of sea ice. Cold Regions Sci Technol 60:107–129

 41. Li ZJ, Zhang LM, Lu P, Leppäranta M (2011) Experimental study 
on the effect of porosity on the uniaxial compressive strength of 
sea ice in Bohai Sea. Sci China Technol Sci 54:2429–2436

 42. Goldstein RV, Osipenko NM (2015) Some aspects of strength in 
sea ice mechanics. Phys Mesomech 18:139–148

 43. Han HW, Li ZJ, Huang WF, Lu P, Lei RB (2015) The uniaxial 
compressive strength of the Arctic summer sea ice. Acta Ocean 
Sinica 34:129–136

 44. Fink UWE, Larson HP (1975) Temperature dependence of water-
ice spectrum between 1 and 4 microns: application to Europa, 
Ganymede, and Saturn’s rings. Icarus 24:411–420

 45. Ligier N, Poulet F, Carter J, Brunetto R, Gourgeot F (2016) VLT/
SINFONI observations of Europa: new insights into the surface 
composition. Astron J 151(6):163

 46. Hall DT, Strobel DF, Feldman PD, McGrath MA, Weaver HA 
(1995) Detection of an oxygen atmosphere on Jupiter moon 
Europa. Nature 373:677–679

 47. Mateo-Marti E, Prieto-Ballesteros O, Sobrado JM, Gomez-Elvira 
J, Martin-Gago JA (2006) A chamber for studying planetary 
environments and its applications to astrobiology. Meas Sci 
Technol 17:2274–2280

 48. Carlson RW, Calvin WM, Dalton JB (2009) Europa’s surface 
composition. In: Pappalardo RT, McKinnon WB, Khurana KK 
(eds) Europa. University of Arizona Press, Tucson, pp 283–327

 49. Kouchi A, Yamamoto T, Kozasa T, Kuroda T, Greenberg JM 
(1994) Conditions for condensation and preservation of amor-
phous ice and crystallinity of astrophysical ices. Astron Astro-
phys 290:1009–1018

 50. Baragiola RA (2003) Water ice on outer Solar System sur-
faces: basic properties and radiation effects. Planet Space Sci 
51:953–961

 51. Hansen GB, McCord TB (2004) Amorphous and crystalline ice 
on the Galilean satellites: a balance between thermal and radio-
lytic processes. J Geophys Res 109:E01012

 52. Famá M, Loeffler MJ, Raut U, Shi J (2008) Radiation effects 
in ice: new results. Nuclear Instrum Meth Phys Res B 
266:3057–3062

 53. Zheng WJ, Jewitt D, Kaiser RI (2009) On the state of water ice on 
Saturn’s moon Titan and implications to icy studies in the outer 
solar system. J Phys Chem A 113:11174–11181

 54. Famá M, Loeffler MJ, Raut U, Baragiola RA (2010) Radiation-
induced amorphization of crystalline ice. Icarus 207:314–319

 55. Rothard H, Domaracka A, Boduch P, Palumbo ME, Strazzulla G, 
da Silveira EF, Dartois E (2017) Modification of ices by cosmic 
rays and solar wind. J Phys B 50:062001

 56. Dalton JB, Shirley JH, Kamp LW (2012) Europa’s icy bright 
plains and dark linea: exogenic and endogenic contributions to 
composition and surface properties. J Geophys Res 117:E03003

 57. Moore JM, Black G, Buratti R, Phillips CB, Spencer J, Sullivan 
R (2009) Surface properties, regolith, and landscape degradation. 
In: Pappalardo RT, McKinnon WB, Khurana KK, Dotson R (eds) 
Europa. University of Arizona Press, Tucson, pp 329–349

 58. Fischer PD, Brown ME, Hand KP (2015) Spatially-resolved spec-
troscopy of Europa: the distinct spectrum of large-scale chaos. 
Astron J 150(5):164

 59. Gammon PH, Kiefte H, Clouter MJ (1983) Elastic con-
stants of ice samples by Brillouin spectroscopy. J Phys Chem 
87:4025–4029

 60. Gammon PH, Kiefte H, Clouter MJ, Denner WW (1983) Elastic 
constants of artificial and natural ice samples by Brillouin spec-
troscopy. J Glaciology 29:433–460

 61. Gagnon RE, Kiefte H, Clouter MJ, Whalley E (1990) Acous-
tic velocities and densities of polycrystalline ice Ih, ice II, ice 
III, ice V, and ice VI by Brillouin spectroscopy. J Chem Phys 
92:1909–1914

 62. Petrenko VF, Whitworth RW (1999) Thermal properties of ice. 
Physics of ice. Oxford University Press, Oxford, pp 40–45

 63. Dillard DS, Timmerhaus KD (1969) Low temperature thermal 
conductivity of selected dielectric crystalline solids. In: Ho CY, 



210 Journal of Dynamic Behavior of Materials (2019) 5:198–211

1 3

Taylor RE (eds) Proc Eighth Conf on thermal conductivity. Ple-
num, New York, pp 949–967

 64. Ratcliffe EH (1962) The thermal conductivity of ice: new data 
on the temperature coefficient. Philos Mag 7:1197–1203

 65. Slack GA (1980) Thermal conductivity of ice. Phys Rev B 
22:3065–3071

 66. Siviour CR (2005). High strain rate properties of materials using 
Hopkinson bar techniques. PhD thesis, Univ. of Cambridge

 67. Gray GT III (2000) Classic split-Hopkinson pressure bar 
testing. In: Kuhn H, Medlin D (eds) ASM Handbook Vol 8: 
mechanical testing and evaluation. Materials Park, OH, ASM 
International, pp 462–476

 68. Chen W, Song B (2011) Split Hopkinson (Kolsky) Bar: design, 
testing and applications. Springer, New York

 69. Othman R (ed) (2018) The Kolsky-Hopkinson Bar Machine: 
Selected Topics. Springer, Berlin

 70. Johnson W, Mellor PB (1973) Engineering plasticity. van Nos-
trand Reinhold, London, p 4

 71. Davies EDH, Hunter SC (1963) The dynamic compression test-
ing of solids by the method of the split Hopkinson pressure bar. 
J Mech Phys Solids 11:155–179

 72. Briscoe BJ, Nosker RW (1984) The influence of interfacial 
friction on the deformation of high density polyethylene in a 
split Hopkinson pressure bar. Wear 95:241–262

 73. Ravichandran G, Subhash G (1994) Critical appraisal of limit-
ing strain rates for compression testing of ceramics in a split 
Hopkinson pressure bar. J Am Ceram Soc 77:263–267

 74. Nemat-Nasser S, Isaacs JB, Starrett JE (1991) Hopkinson tech-
niques for dynamic recovery experiments. Proc R Soc Lond A 
435:371–391

 75. Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping tech-
niques for testing brittle materials with a split Hopkinson pres-
sure bar. Exper Mech 42:93–106

 76. Chen XD, Ge LM, Zhou JK, Wu SX (2016) Experimental study 
on split Hopkinson pressure bar pulse-shaping techniques for 
concrete. ASCE J Mater Civil Eng 28:04015196

 77. Song ZH, Wang ZH, Kim H, Ma HW (2016) Pulse shaper 
and dynamic compressive property investigation on ice using 
a large-sized modified split Hopkinson pressure bar. Latin Am 
J Solids Struct 13:391–406

 78. Davies RM (1948) A critical study of the Hopkinson pressure 
bar. Phil Trans Roy Soc London A 240:375–457

 79. Parry DJ, Walker AG, Dixon PR (1995) Hopkinson bar pulse 
smoothing. Meas Sci Technol 6:443–446

 80. Ramesh KT (2008) High rates and impact experiments. In: 
Sharpe WN (ed) Springer handbook of experimental solid 
mechanics. Springer, Berlin, pp 929–960

 81. Subhash G, Ravichandran G (2000) Split-Hopkinson bar test-
ing of ceramics. In: Kuhn H, Medlin D (eds) ASM Handbook 
Vol 8: mechanical testing and evaluation. Materials Park, OH, 
ASM International, pp 497–504

 82. Gorham DA (1989) Specimen inertia in high strain-rate com-
pression. J Phys D Appl Phys 22:1888–1893

 83. Gorham DA, Pope PH, Field JE (1992) An improved method 
for compressive stress-strain measurements at very high strain 
rates. Proc R Soc London A 438:153–170

 84. Siviour CR, Walley SM (2018) Inertial and frictional effects in 
dynamic compression testing. In: Othman R (ed) The Kolsky-
Hopkinson bar machine. Springer, Berlin, pp 205–247

 85. Walley SM, Field JE, Pope PH, Safford NA (1989) A study of 
the rapid deformation behaviour of a range of polymers. Phil 
Trans R Soc London A 328:1–33

 86. Radford DD, Walley SM, Church P, Field JE (2003) Dynamic 
upsetting and failure of metal cylinders: experiments and anal-
ysis. J Phys IV France 110:263–268

 87. Faraday M (1850) On certain conditions of freezing water. J 
Franklin Inst 50:283–284

 88. Person CC (1850) Sur la chaleur latente de fusion de la glace. 
CR Acad Sci Paris 30:526–528

 89. Person CC (1851) Latent heat of water. J Franklin Inst 
51:189–190

 90. Forbes JD (1858) On some properties of ice near its melting 
point. J Franklin Inst 66:402–404

 91. Faraday M (1860) Note on regelation. Proc R Soc London 
10:440–450

 92. Bowden FP, Hughes TP (1939) The mechanism of sliding on 
ice and snow. Proc R Soc London A 172:280–298

 93. Bowden FP (1953) Friction on snow and ice. Proc R Soc Lon-
don A 217:462–478

 94. Nakaya U, Matsumoto A (1954) Simple experiment showing 
the existence of liquid water film on the ice surface. J Colloid 
Sci 9:41–49

 95. Ambach W, Mayr B (1981) Ski gliding and water film. Cold 
Regions Sci Technol 5:59–65

 96. Maruyama M, Satoi T, Taniguchi S, Kawamura M, Kodera 
S, Kishimoto Y, Furukawa Y (2000) X-ray analysis of the 
structure of premelted layers at ice interfaces. Jpn J Appl Phys 
39:6696–6699

 97. Sadtchenko V, Ewing GE (2002) Interfacial melting of thin ice 
films: an infrared study. J Chem Phys 116:4686–4697

 98. Liu SH, Luo JB, Li G, Zhang CH, Lu XC (2008) Effect of sur-
face physicochemical properties on the lubricating properties 
of water film. Appl Surf Sci 254:7137–7142

 99. Thomson ES, Hansen-Gooe H, Wettlaufer JS, Wilen LA (2013) 
Grain boundary melting in ice. J Chem Phys 138:124707

 100. Murata K, Asakawa H, Nagashima K, Furukawa Y, Sazaki G 
(2016) Thermodynamic origin of surface melting on ice crys-
tals. Proc Nat Acad Sci USA 113:E6741–E6748

 101. Matveev KI (2017) An analytical model for flat-ski friction in 
steady horizontal gliding. Sports Eng 20:293–298

 102. Bokarev VP, Krasnikov GY (2018) Model of coordination 
melting of crystals and anisotropy of physical and chemical 
properties of the surface. Surf Sci 668:73–79

 103. Ovaska M, Tuononen AJ (2018) Multiscale imaging of wear 
tracks in ice skate friction. Tribol Int 121:280–286

 104. Qiu YQ, Molinero V (2018) Why is it so difficult to identify 
the onset of ice premelting? J Phys Chem Lett 9:5179–5182

 105. Scherge M, Böttcher R, Spagni A, Marchetto D (2018) High-
speed measurements of steel–ice friction: experiment vs. cal-
culation. Lubricants 6(1):26

 106. Sugimoto T, Otsuki Y, Ishiyama T, Morita A, Watanabe K, 
Matsumoto Y (2019) Topologically disordered mesophase at 
the topmost surface layer of crystalline ice between 120 and 
200 K. Phys Rev B 99:121402

 107. Bair S, Casalini R (2008) A scaling parameter and function 
for the accurate correlation of viscosity with temperature and 
pressure across eight orders of magnitude of viscosity. Trans 
ASME 130:041802

 108. Kennedy LW, Jones OE (1969) Longitudinal wave propagation 
in a circular bar loaded suddenly by a radially distributed end 
stress. Trans ASME 36:470–478

 109. Safford NA (1992) Materials testing up to  105  s−1 using a 
miniaturised Hopkinson bar, with dispersion corrections. In: 
Zhang G, Huang S (eds) Proc 2nd Int Symp on intense dynamic 
loading and its effects. Sichuan University Press, Chengdu, pp 
378–383

 110. Kishida K, Kataoka T, Yokoyama T, Nakano M (1987) Behav-
iour of materials at high strain rates and cryogenic temperature. 
In: Kawata K, Shioiri J (eds) Macro- and micro-mechanics 
of high velocity deformation and Fracture. Springer-verlag, 
Berlin, pp 75–84



211Journal of Dynamic Behavior of Materials (2019) 5:198–211 

1 3

 111. Gammon PH, Kiefte K, Clouter MJ, Denner WW (1981) Note 
on analysis of acoustic data from hexagonal monocrystals of 
unknown orientation. J Acoust Soc Am 69:1503–1504

 112. Rottger K, Endriss A, Ihringer J, Doyle S, Kuhs WF (1994) 
Lattice constants and thermal expansion of  H2O and  D2O ice 
Ih between 10 and 265K. Acta Cryst B 50:644–648

 113. Holmquist TJ, Johnson GR (2011) A computational constitu-
tive model for glass subjected to large strains, high strain rates 
and high pressures. Trans ASME 78:051003

 114. Holmquist TJ, Johnson GR, Gerlach CA (2017) An improved 
computational constitutive model for glass. Phil Trans R Soc A 
375:20160182

 115. Walley SM (2014) An introduction to the properties of silica 
glass in ballistic applications. Strain 50:470–500

 116. Kuhn HA (2000) Uniaxial compression testing. In: Kuhn H, 
Medlin D (eds) ASM handbook Vol 8: mechanical testing and 
evaluation. Materials Park, OH, ASM International, pp 143–151

 117. Trickett YL, Baker I, Pradhan PMS (2000) The orientation 
dependence of the strength of ice single crystals. J Glaciology 
46:41–44

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Problems Associated with Making Mechanical Measurements on Water–Ice at Quasistatic and Dynamic Strain Rates
	Abstract
	Introduction
	Specimen Preparation

	Experimental
	Split Hopkinson Pressure Bar
	Temperature
	Ice Specimens
	Low Rate Testing

	Results
	Conclusions and Suggestions for Future Research
	Acknowledgements 
	References




