12,722 research outputs found
Teacher CPD across borders: Reflections on how a study tour to England helped to change practice and praxis among Jamaican teachers
This article is available open access from the publisher’s website through the link below. Copyright © 2014 Pak Publishing Group.The professional development of teachers and school leaders is an important factor in improving the overall quality and effectiveness of schools. Teachers and Principals who are well trained and who have exposure to different educational systems are in a position to draw on their experiences of other systems to improve outcomes for their classrooms, staffrooms and institutions as a whole. Reflecting on our own experiences of organising and delivering a Study Tour, we also present the experiences of Jamaican public educators on a recent Study Tour to England. From their feedback, it is clear that this experiential approach to capacity building has gone some way in stimulating participants’ thinking as regards their practice and how this can be improved, underpinned by Hargreaves and Fullan’s (2012) notion of reconceptualising professional capital and Mintzberg (2004) view of global mindsets
Femtosecond probing of bimolecular reactions: The collision complex
Progress has been made in probing the femtosecond
dynamics of transition states of chemical reactions.(1) The
"half-collision" case of unimolecular reactions has been
experimentally investigated for a number of systems and
much theoretical work has already been developed.(2) For
bimolecular reactions, the case of full collision, the zero of
time is a problem which makes the femtosecond temporal
resolution of the dynamics a difficult task
Magnetorotational-type instability in Couette-Taylor flow of a viscoelastic polymer liquid
We describe an instability of viscoelastic Couette-Taylor flow that is
directly analogous to the magnetorotational instability (MRI) in astrophysical
magnetohydrodynamics, with polymer molecules playing the role of magnetic field
lines. By determining the conditions required for the onset of instability and
the properties of the preferred modes, we distinguish it from the centrifugal
and elastic instabilities studied previously. Experimental demonstration and
investigation should be much easier for the viscoelastic instability than for
the MRI in a liquid metal. The analogy holds with the case of a predominantly
toroidal magnetic field such as is expected in an accretion disk and it may be
possible to access a turbulent regime in which many modes are unstable.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Femtosecond real-time probing of reactions. VIII. The bimolecular reaction Br+I2
In this paper, we discuss the experimental technique for real-time measurement of the lifetimes of the collision complex of bimolecular reactions. An application to the atom–molecule Br+I_2 reaction at two collision energies is made. Building on our earlier Communication [J. Chem. Phys. 95, 7763 (1991)], we report on the observed transients and lifetimes for the collision complex, the nature of the transition state, and the dynamics near threshold. Classical trajectory calculations provide a framework for deriving the global nature of the reactive potential energy surface, and for discussing the real-time, scattering, and asymptotic (product-state distribution) aspects of the dynamics. These experimental and theoretical results are compared with the extensive array of kinetic, crossed beam, and theoretical studies found in the literature for halogen radical–halogen molecule exchange reactions
An analysis of factors which influence the effectiveness of the morning report.
Thesis (M.S.)--Boston University
Includes 10 tables, 1 figure
An analysis of factors which influence the effectiveness of the morning report.
Thesis (M.S.)--Boston University
Includes 10 tables, 1 figure
Testing Theoretical Evolutionary Models with AB Dor C and the Initial Mass Function
We assess the constraints on the evolutionary models of young low-mass
objects that are provided by the measurements of the companion AB Dor C by
Close and coworkers and by a new comparison of model-derived IMFs of
star-forming regions to the well-calibrated IMF of the solar neighborhood.
After performing an independent analysis of Close's imaging and spectroscopic
data for AB Dor C, we find that AB Dor C is not detected at a significant level
(SN 1.2) in the SDI images when one narrow-band image is subtracted from
another, but that it does appear in the individual SDI frames as well as the
images at JHK. Using the age of 75-150 Myr for AB Dor from Luhman, Stauffer, &
Mamajek, the luminosity predicted by the models of Chabrier & Baraffe is
consistent with the value that we estimate. We measure a spectral type of
M6+/-1 from the K-band spectrum of AB Dor C, which is earlier than the value of
M8+/-1 from Close and is consistent with the model predictions when a dwarf
temperature scale is adopted. In a test of these models at much younger ages,
we show that the low-mass IMFs that they produce for star-forming regions are
similar to the IMF of the solar neighborhood. If the masses of the low-mass
stars and brown dwarfs in these IMFs of star-forming regions were
underestimated by a factor of two as suggested by Close, then the IMF
characterizing the current generation of Galactic star formation would have to
be radically different from the IMF of the solar neighborhood.Comment: 15 pages, accepted to the Astrophysical Journa
Superfluidity and dimerization in a multilayered system of fermionic polar molecules
We consider a layered system of fermionic molecules with permanent dipole
moments aligned by an external field. The dipole interactions between fermions
in adjacent layers are attractive and induce inter-layer pairing. Due to
competition for pairing among adjacent layers, the mean-field ground state of
the layered system is a dimerized superfluid, with pairing only between
every-other layer. We construct an effective Ising-XY lattice model that
describes the interplay between dimerization and superfluid phase fluctuations.
In addition to the dimerized superfluid ground state, and high temperature
normal state, at intermediate temperature, we find an unusual dimerized
"pseudogap" state with only short-range phase coherence. We propose light
scattering experiments to detect dimerization.Comment: 4 pages main text + 3 pages supplemental Appendices, 4 figure
Measuring Fundamental Parameters of Substellar Objects. II: Masses and Radii
We present mass and radius derivations for a sample of very young, mid- to
late M, low-mass stellar and substellar objects in Upper Sco and Taurus. In a
previous paper, we determined effective temperatures and surface gravities for
these targets, from an analysis of their high-resolution optical spectra and
comparisons to the latest synthetic spectra. We now derive extinctions, radii,
masses and luminosities by combining our previous results with observed
photometry, surface fluxes from the synthetic spectra and the known cluster
distances. These are the first mass and radius estimates for young, very low
mass bodies that are independent of theoretical evolutionary models (though our
estimates do depend on spectral modeling). We find that for most of our sample,
our derived mass-radius and mass-luminosity relationships are in very good
agreement with the theoretical predictions. However, our results diverge from
the evolutionary model values for the coolest, lowest-mass targets: our
inferred radii and luminosities are significantly larger than predicted for
these objects at the likely cluster ages, causing them to appear much younger
than expected. We suggest that uncertainties in the evolutionary models - e.g.,
in the choice of initial conditions and/or treatment of interior convection -
may be responsible for this discrepancy. Finally, two of our late-M objects
(USco 128 and 130) appear to have masses close to the deuterium-fusion boundary
(9--14 Jupiters, within a factor of 2). This conclusion is primarily a
consequence of their considerable faintness compared to other targets with
similar extinction, spectral type and temperature (difference of 1 mag). Our
result suggests that the faintest young late-M or cooler objects may be
significantly lower in mass than the current theoretical tracks indicate.Comment: 54 pages, incl. 5 figs, accepted Ap
- …