1,260 research outputs found
The vector floor and ceiling model
This paper motivates and develops a nonlinear extension of the Vector Autoregressive model which we call the Vector Floor and Ceiling model. Bayesian and classical methods for estimation and testing are developed and compared in the context of an application involving U.S. macroeconomic data. In terms of statistical significance both classical and Bayesian methods indicate that the (Gaussian) linear model is inadequate. Using impulse response functions we investigate the economic significance of the statistical analysis. We find evidence of strong nonlinearities in the contemporaneous relationships between the variables and milder evidence of nonlinearity in the conditional mean
Time varying VARs with inequality restrictions
In many applications involving time-varying parameter VARs, it is desirable to restrict the VAR coe¢ cients at each point in time to be non-explosive. This is an example of a problem where inequality restrictions are imposed on states in a state space model. In this paper, we describe how existing MCMC algorithms for imposing such inequality restrictions can work poorly (or not at all) and suggest alternative algorithms which exhibit better performance. Furthermore, previous algorithms involve an approximation relating to a key integrating constant. Our algorithms are exact, not involving this approximation. In an application involving a commonly-used U.S. data set, we show how this approximation can be a poor one and present evidence that the algorithms proposed in this paper work well
Prior elicitation in multiple change-point models
This paper discusses Bayesian inference in change-point models. Existing approaches involve placing a (possibly hierarchical) prior over a known number of change-points. We show how two popular priors have some potentially undesirable properties (e.g. allocating excessive prior weight to change-points near the end of the sample) and discuss how these properties relate to imposing a fixed number of changepoints in-sample. We develop a new hierarchical approach which allows some of of change-points to occur out-of sample. We show that this prior has desirable properties and handles the case where the number of change-points is unknown. Our hierarchical approach can be shown to nest a wide variety of change-point models, from timevarying parameter models to those with few (or no) breaks. Since our prior is hierarchical, data-based learning about the parameter which controls this variety occurs
Are apparent findings of nonlinearity due to structural instability in economic time series?
Many modelling issues and policy debates in macroeconomics depend on whether macroeconomic times series are best characterized as linear or nonlinear. If departures from linearity exist, it is important to know whether these are endogenously generated (as in, e.g., a threshold autoregressive model) or whether they merely reflect changing structure over time. We advocate a Bayesian approach and show how such an approach can be implemented in practice. An empirical exercise involving several macroeconomic time series shows that apparent findings of threshold type nonlinearities could be due to structural instability
The Vector Floor and Ceiling Model
This paper motivates and develops a nonlinear extension of the Vector Autoregressive model which we call the Vector Floor and Ceiling model. Bayesian and classical methods for estimation and testing are developed and compared in the context of an application involving U.S. macroeconomic data. In terms of statistical significance both classical and Bayesian methods indicate that the (Gaussian) linear model is inadequate. Using impulse response functions we investigate the economic significance of the statistical analysis. We find evidence of strong nonlinearities in the contemporaneous relationships between the variables and milder evidence of nonlinearity in the conditional mean.Nonlinearity; Bayesian; Vector Autoregression
Forecasting in Large Macroeconomic Panels using Bayesian Model Averaging
This paper considers the problem of forecasting in large macroeconomic panels using Bayesian model averaging. Theoretical justifications for averaging across models, as opposed to selecting a single model, are given. Practical methods for implementing Bayesian model averaging with factor models are described. These methods involve algorithms which simulate from the space defined by all possible models. We discuss how these simulation algorithms can also be used to select the model with the highest marginal likelihood (or highest value of an information criterion) in an efficient manner. We apply these methods to the problem of forecasting GDP and inflation using quarterly U.S. data on 162 time series. For both GDP and inflation, we find that the models which contain factors do out-forecast an AR(p), but only by a relatively small amount and only at short horizons. We attribute these findings to the presence of structural instability and the fact that lags of dependent variable seem to contain most of the information relevant for forecasting. Relative to the small forecasting gains provided by including factors, the gains provided by using Bayesian model averaging over forecasting methods based on a single model are appreciable.
Prior Elicitation in Multiple Change-point Models
This paper discusses Bayesian inference in change-point models. The main existing approaches either attempt to be noninformative by using a Uniform prior over change-points or use an informative hierarchical prior. Both these approaches assume a known number ofchange-points. We show how they have some potentially undesirable properties and discuss how these properties relate to the imposition of a …xed number of changepoints. We develop a new Uniform prior which allows some of the change-points to occur out-of sample. This prior has desirable properties, can reasonably be interpreted as “noninformative” and handles the case where the number of change-points is unknown. We show how the general ideas of our approach can be extended to informative hierarchical priors. With arti…cial data and two empirical illustrations, we show how these di¤erent priors can have a substantial impact on estimation and prediction even with moderately large data sets.
Realia PowerPoint: How to Make a Small Engine Cutaway
The Purpose of this project was to create a PowerPoint that could be used by high school agricultural programs and small engine instructors to design and build a 3-deminsional cutaway engine model and implement realia into the classroom. This project will serve a learning tool to help agriculture instructors to teach students the inner workings of an engine and the relationships between parts. This project should be taken under consideration by all agricultural mechanic programs that teach small engines. This project will be beneficial to all students that want to learn small engines
Understanding Liquidity and Credit Risks in the Financial Crisis*
This paper develops a structured dynamic factor model for the spreads between London Interbank Offered Rate (LIBOR) and overnight index swap (OIS) rates for a panel of banks. Our model involves latent factors which relect liquidity and credit risk. Our empirical results show that surges in the short term LIBOR-OIS spreads during the 2007-2009 financial crisis were largely driven by liquidity risk. However, credit risk played a more significant role in the longer term (twelve-month) LIBOR-OIS spread. The liquidity risk factors are more volatile than the credit risk factor. Most of the familiar events in the financial crisis are linked more to movements in liquidity risk than credit risk.LIBOR-OIS spread, factor model, credit default swap, Bayesian
Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points
This paper develops a new approach to change-point modeling that allows the number of change-points in the observed sample to be unknown. The model we develop assumes regime durations have a Poisson distribution. It approximately nests the two most common approaches: the time varying parameter model with a change-point every period and the change-point model with a small number of regimes. We focus considerable attention on the construction of reasonable hierarchical priors both for regime durations and for the parameters which characterize each regime. A Markov Chain Monte Carlo posterior sampler is constructed to estimate a change-point model for conditional means and variances. Our techniques are found to work well in an empirical exercise involving US GDP growth and inflation. Empirical results suggest that the number of change-points is larger than previously estimated in these series and the implied model is similar to a time varying parameter (with stochastic volatility) model.Bayesian; structural break; Markov Chain Monte Carlo; hierarchical prior
- …