28 research outputs found

    Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli

    Get PDF
    Behavioral responses to painful stimuli require peripheral sensory neurons called nociceptors. Electrophysiological studies show that most C-fiber nociceptors are polymodal (i.e., respond to multiple noxious stimulus modalities, such as mechanical and thermal); nevertheless, these stimuli are perceived as distinct. Therefore, it is believed that discrimination among these modalities only occurs at spinal or supraspinal levels of processing. Here, we provide evidence to the contrary. Genetic ablation in adulthood of unmyelinated sensory neurons expressing the G protein-coupled receptor Mrgprd reduces behavioral sensitivity to noxious mechanical stimuli but not to heat or cold stimuli. Conversely, pharmacological ablation of the central branches of TRPV1+ nociceptors, which constitute a nonoverlapping population, selectively abolishes noxious heat pain sensitivity. Combined elimination of both populations yielded an additive phenotype with no additional behavioral deficits, ruling out a redundant contribution of these populations to heat and mechanical pain sensitivity. This double-dissociation suggests that the brain can distinguish different noxious stimulus modalities from the earliest stages of sensory processing

    Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain

    Get PDF
    Background: Descending facilitation, from the brainstem, promotes spinal neuronal hyperexcitability and behavioural hypersensitivity in many chronic pain states. We have previously demonstrated enhanced descending facilitation onto dorsal horn neurones in a neuropathic pain model, and shown this to enable the analgesic effectiveness of gabapentin. Here we have tested if this hypothesis applies to other pain states by using a combination of approaches in a rat model of osteoarthritis (OA) to ascertain if 1) a role for descending 5HT mediated facilitation exists, and 2) if pregabalin (a newer analogue of gabapentin) is an effective antinociceptive agent in this model. Further, quantitative-PCR experiments were undertaken to analyse the alpha(2)delta-1 and 5-HT3A subunit mRNA levels in L3-6 DRG in order to assess whether changes in these molecular substrates have a bearing on the pharmacological effects of ondansetron and pregabalin in OA.Results: Osteoarthritis was induced via intra-articular injection of monosodium iodoacetate (MIA) into the knee joint. Control animals were injected with 0.9% saline. Two weeks later in vivo electrophysiology was performed, comparing the effects of spinal ondansetron (10-100 mu g/50 mu l) or systemic pregabalin (0.3-10 mg/kg) on evoked responses of dorsal horn neurones to electrical, mechanical and thermal stimuli in MIA or control rats. In MIA rats, ondansetron significantly inhibited the evoked responses to both innocuous and noxious natural evoked neuronal responses, whereas only inhibition of noxious evoked responses was seen in controls. Pregabalin significantly inhibited neuronal responses in the MIA rats only; this effect was blocked by a pre-administration of spinal ondansetron. Analysis of alpha(2)delta-1 and 5-HT3A subunit mRNA levels in L3-6 DRG revealed a significant increase in alpha(2)delta-1 levels in ipsilateral L3&4 DRG in MIA rats. 5-HT3A subunit mRNA levels were unchanged.Conclusion: These data suggest descending serotonergic facilitation plays a role in mediating the brush and innocuous mechanical punctate evoked neuronal responses in MIA rats, suggesting an adaptive change in the excitatory serotonergic drive modulating low threshold evoked neuronal responses in MIA-induced OA pain. This alteration in excitatory serotonergic drive, alongside an increase in alpha(2)delta-1 mRNA levels, may underlie pregabalin's state dependent effects in this model of chronic pain

    Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache

    No full text
    OBJECTIVE: To update the 2008 American Academy of Neurology (AAN) guidelines regarding botulinum neurotoxin for blepharospasm, cervical dystonia (CD), headache, and adult spasticity. METHODS: We searched the literature for relevant articles and classified them using 2004 AAN criteria. RESULTS AND RECOMMENDATIONS: Blepharospasm: OnabotulinumtoxinA (onaBoNT-A) and incobotulinumtoxinA (incoBoNT-A) are probably effective and should be considered (Level B). AbobotulinumtoxinA (aboBoNT-A) is possibly effective and may be considered (Level C). CD: AboBoNT-A and rimabotulinumtoxinB (rimaBoNT-B) are established as effective and should be offered (Level A), and onaBoNT-A and incoBoNT-A are probably effective and should be considered (Level B). Adult spasticity: AboBoNT-A, incoBoNT-A, and onaBoNT-A are established as effective and should be offered (Level A), and rimaBoNT-B is probably effective and should be considered (Level B), for upper limb spasticity. AboBoNT-A and onaBoNT-A are established as effective and should be offered (Level A) for lower-limb spasticity. Headache: OnaBoNT-A is established as effective and should be offered to increase headache-free days (Level A) and is probably effective and should be considered to improve health-related quality of life (Level B) in chronic migraine. OnaBoNT-A is established as ineffective and should not be offered for episodic migraine (Level A) and is probably ineffective for chronic tension-type headaches (Level B)

    Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache

    No full text
    OBJECTIVE: To update the 2008 American Academy of Neurology (AAN) guidelines regarding botulinum neurotoxin for blepharospasm, cervical dystonia (CD), headache, and adult spasticity. METHODS: We searched the literature for relevant articles and classified them using 2004 AAN criteria. RESULTS AND RECOMMENDATIONS: Blepharospasm: OnabotulinumtoxinA (onaBoNT-A) and incobotulinumtoxinA (incoBoNT-A) are probably effective and should be considered (Level B). AbobotulinumtoxinA (aboBoNT-A) is possibly effective and may be considered (Level C). CD: AboBoNT-A and rimabotulinumtoxinB (rimaBoNT-B) are established as effective and should be offered (Level A), and onaBoNT-A and incoBoNT-A are probably effective and should be considered (Level B). Adult spasticity: AboBoNT-A, incoBoNT-A, and onaBoNT-A are established as effective and should be offered (Level A), and rimaBoNT-B is probably effective and should be considered (Level B), for upper limb spasticity. AboBoNT-A and onaBoNT-A are established as effective and should be offered (Level A) for lower-limb spasticity. Headache: OnaBoNT-A is established as effective and should be offered to increase headache-free days (Level A) and is probably effective and should be considered to improve health-related quality of life (Level B) in chronic migraine. OnaBoNT-A is established as ineffective and should not be offered for episodic migraine (Level A) and is probably ineffective for chronic tension-type headaches (Level B)
    corecore