14 research outputs found

    Evaluation of artificial feeds for shrimp (Penaeus monodon) production in brackishwater ponds

    Get PDF
    Abstract only.The experiment was conducted in fifteen 500-m2 brackishwater ponds to determine the response of Penaeus monodon juveniles fed with various artificial diets. Five treatments with three replicates each were: two commercial feeds containing 45% and 40% crude protein (treatments I and II), two experimental diets formulated to contain 35% crude protein (treatments III and IV) and control, without feeding (treatment V). Shrimp were fed twice daily at feeding rates based on shrimp consumption. Highest mean harvest weight was attained in treatment I (23.47 g) > III (19.25 g) > II (18.86 g) > IV (11.29 g) > V (9.27 g). Statistical analysis showed that differences in growth were significant at 5% probability level. However, growth in treatments I, II and III are comparable, also growth in treatments II, III and IV. Growth in treatments I, II, III and IV was significantly different from treatment V. Highest mean survival was attained in treatment III (91.82%) > I (88.93%) > II (86.95%) > IV (83.62%) V (82.62%). Statistical analysis showed no significant differences among treatments at 5% probability level. Projecting on a hectare basis, mean yield for each treatment was: I (628.37 kg) > II (496.35 kg) per crop in 120 days culture. Good yield was attributed to provision of formulated feeds, use of pumps in addition to tidal change for water exchange and control of predators, and pest eradication through proper pond preparation

    Exogenous miRNAs from Moringa oleifera Lam. recover a dysregulated lipid metabolism

    Get PDF
    A balanced diet is critical for human health, and edible plants play an important role in providing essential micronutrients as well as specific microRNAs (miRNAs) that can regulate human gene expression. Here we present the effects of Moringa oleifera (MO) miRNAs (mol-miRs) on lipid metabolism. Through in silico studies we identified the potential genes involved in lipid metabolism targeted by mol-miRs. To this end, we tested the efficacy of an aqueous extract of MO seeds (MOES), as suggested in traditional African ethnomedicine, or its purified miRNAs. The biological properties of MO preparations were investigated using a human derived hepatoma cell line (HepG2) as a model. MOES treatment decreased intracellular lipid accumulation and induced apoptosis in HepG2. In the same cell line, transfection with mol-miRs showed similar effects to MOES. Moreover, the effect of the mol-miR pool was investigated in a pre-obese mouse model, in which treatment with mol-miRs was able to prevent dysregulation of lipid metabolism

    THE RELATIONSHIP BETWEEN INTERNATIONAL INVESTMENT LAW AND STATES\ubf MEASURES AND OBLIGATIONS IN INTERNATIONAL ENVIRONMENTAL LAW

    No full text
    The thesis discusses the interrelationship between international investment law and States' measures and obligations in international environmental law. It first analyses the level of integration of non-economic concerns \u2013 in particular environmental concerns \u2013 in investment treaties, with a view to understanding and classifying the different techniques that have been used to achieve such integration. It then reviews the relationship between investment and environmental concerns from the particular angle of \u201cexpropriation\u201d. It further examines the relevant practice in the field of State contracts, with a view to understanding what their possible impact on the State\u2019s freedom to adopt environmental measures may be. Finally, it discusses the possible role that procedural mechanisms can play for the advocacy of sustainable development issues within investor-State arbitrations

    Título: Examen ecclesiasticum

    No full text
    Marca tip. en portSign.: [ ]\p4\s, A-Z\p8\s, 2A-2X\p8\s, 2Y\p10\sTexto a dos colAntepPort. a dos tinta

    The HumanImmunodeficiency Virus Type 1 Nef and Vpu Proteins Down-regulate The NaturalKiller Cell Activating Ligand PVR.

    No full text
    The human immunodeficiency virus type 1 (HIV-1) evades the immune responses of natural killer (NK) cells through mechanisms that have been partially deciphered. Here we show that in HIV-1-infected T lymphocytes, the early viral Nef protein downmodulates PVR (CD155, Necl-5), a ligand for the activating receptor DNAM-1 (CD226) expressed by all NK cells, CD8(+) T cells, and other cell types. This novel Nef activity is conserved by Nef proteins of laboratory HIV-1 strains (NL4-3, SF2) and of a patient-derived virus, but it is not maintained by HIV-2. Nef uses the same motifs to downregulate PVR and HLA-I molecules, likely by the same mechanisms. Indeed, as previously demonstrated for HLA-I, Nef reduces the total amounts of cell-associated PVR. Optimal downregulation of cell surface PVR by Nef also requires the presence of the late viral factor Vpu. In line with PVR reduction, the NK cell-mediated lysis of T cells infected by a wild-type but not Nef-deficient virus is virtually abrogated upon blocking of both DNAM-1 and another activating receptor, NKG2D, previously shown to mediate killing of HIV-infected cells. Together, these data demonstrate that the PVR downmodulation by Nef and Vpu is a strategy evolved by HIV-1 to prevent NK cell-mediated lysis of infected cells. The PVR downregulation reported here has the potential to affect the immune responses of other DNAM-1-positive cells besides NK cells and to alter multiple PVR-mediated cellular processes, such as adhesion and migration, and may thus greatly influence HIV-1 pathogenesis

    Bioinformatics prediction and experimental validation of MicroRNAs involved in cross-kingdom interaction

    No full text
    MicroRNAs (miRNAs) are a class of small noncoding RNAs that act as efficient post-transcriptional regulators of gene expression. In 2012, the first cross-kingdom miRNA-based interaction had been evidenced, demonstrating that exogenous miRNAs act in a manner of mammalian functional miRNAs. Starting from this evidence, we defined the concept of cross-kingdom functional homology between plant and mammalian miRNAs as a needful requirement for vegetal miRNA to explicit a regulation mechanism into the host mammalian cell, comparable to the endogenous one. Then, we proposed a new dedicated algorithm to compare plant and mammalian miRNAs, searching for functional sequence homologies between them, and we developed a web software called MirCompare. We also predicted human genes regulated by the selected plant miRNAs, and we determined the role of exogenous miRNAs in the perturbation of intracellular interaction networks. Finally, as already performed by Pirrò and coworkers, the ability of MirCompare to select plant miRNAs with functional homologies with mammalian ones has been experimentally confirmed by evaluating the ability of mol-miR168a to downregulate the protein expression of SIRT1, when its mimic is transfected into human hepatoma cell line G2 (HEPG2) cells. This tool is implemented into a user-friendly web interface, and the access is free to public through the website http://160.80.35.140/MirCompare

    Effect of microvesicles from Moringa oleifera containing miRNA on proliferation and apoptosis in tumor cell lines

    No full text
    Human microvesicles are key mediators of cell-cell communication. Exosomes function as microRNA transporters, playing a crucial role in physiological and pathological processes. Plant microvesicles (MVs) display similar features to mammalian exosomes, and these MVs might enhance plant microRNA delivery in mammals. Considering that plant microRNAs have been newly identified as bioactive constituents in medicinal plants, and that their potential role as regulators in mammals has been underlined, in this study, we characterized MVs purified from Moringa oleifera seeds aqueous extract (MOES MVs) and used flow cytometry methods to quantify the ability to deliver their content to host cells. The microRNAs present in MOES MVs were characterized, and through a bioinformatic analysis, specific human apoptosis-related target genes of plant miRNAs were identified. In tumor cell lines, MOES MVs treatment reduced viability, increased apoptosis levels associated with a decrease in B-cell lymphoma 2 protein expression and reduced mitochondrial membrane potential. Interestingly, the effects observed with MOES MVs treatment were comparable to those observed with MOES treatment and transfection with the pool of small RNAs isolated from MOES, used as a control. These results highlight the role of microRNAs transported by MOES MVs as natural bioactive plant compounds that counteract tumorigenesis

    Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts

    Get PDF
    There is a growing interest in therapeutically targeting the inflammatory response that underlies age-related chronic diseases including obesity and type 2 diabetes. Through integrative small RNA sequencing, we show the presence of conserved plant miR159a and miR156c in dried nuts having high complementarity with the mammalian TNF receptor superfamily member 1a (Tnfrsf1a) transcript. We detected both miR159a and miR156c in exosome-like nut nanovesicles (NVs) and demonstrated that such NVs reduce Tnfrsf1a protein and dampen TNF-α signaling pathway in adipocytes. Synthetic single-stranded microRNAs (ss-miRs) modified with 2'-O-methyl group function as miR mimics. In plants, this modification naturally occurs on nearly all small RNAs. 2'-O-methylated ss-miR mimics for miR156c and miR159a decreased Tnfrsf1a protein and inflammatory markers in hypertrophic as well as TNF-α-treated adipocytes and macrophages. miR156c and miR159a mimics effectively suppress inflammation in mice, highlighting a potential role of plant miR-based, single-stranded oligonucleotides in treating inflammatory-associated metabolic diseases

    Naïve/Effector CD4 T cell ratio as a useful predictive marker of immune reconstitution in late presenter HIV patients: A multicenter study

    No full text
    A significant proportion of HIV-infected patients experiencing a late diagnosis highlights the need to define immunological protocols able to help the clinicians in identifying patients at higher risk for immunological failure. The aim of the study was to evaluate the feasibility of easy cytometric tests in defining the effect of antiretroviral treatment (cART) on immunological homeostasis and in identifying predictive markers of early immune recovery. Chronic HIV infected patients (n = 202) were enrolled in a prospective multicentric study, and their immunological profile was studied before (w0) and after 24 weeks (w24) of antiretroviral treatment (cART) using a standardized flow cytometric panel. Based on CD4 T cell count before treatment, patients were divided in late (LP: CD4 <350/mmc), intermediate (IP: 350/mmc<500/mmc) and early (EP: CD4 >500/mmc) presenters. In all groups, cART introduction increased CD4 and CD4/CD8 T cell ratio, naïve T cell (CD4 and CD8) and CD127-expressing CD4 T cells. In parallel, cART significantly reduced effector memory T cells (CD4 and CD8) and T cell activation (CD38+CD8 and CD95+CD4 T cells). Moreover, the frequency of Naïve and Effector CD4 T cells before treatment correlated with several immune parameters key associated with the pathogenesis of HIV, thus mirroring the health of immune system. Interestingly, we identified the Naïve/Effector CD4 T cell ratio (N/EM) at w0 as a marker able to predict early immune recovery. Specifically, in LP, N/EM ratio was significantly higher in immunological responder patients (CD4>500/mmc at w24) when compared to immunological non responder (CD4 T cells <500/mmc at w24). Finally, a multivariate analysis indicates that after 24w patients with N/EM ratio higher than 1.86 at w0 recovered 96 CD4 T cells more than those with N/EM ratio lower than 0.46. Altogether, our data define an easy protocol able to define reliable immunological markers useful for the characterization of immune profile in viremic HIV patients and identify the naïve/effector CD4 T cell ratio as a new tool able to predict an early immune reconstitution potential
    corecore