792 research outputs found

    A consistent interpretation of the low temperature magneto-transport in graphite using the Slonczewski--Weiss--McClure 3D band structure calculations

    Full text link
    Magnetotransport of natural graphite and highly oriented pyrolytic graphite (HOPG) has been measured at mK temperatures. Quantum oscillations for both electron and hole carriers are observed with orbital angular momentum quantum number up to N90N\approx90. A remarkable agreement is obtained when comparing the data and the predictions of the Slonczewski--Weiss--McClure tight binding model for massive fermions. No evidence for Dirac fermions is observed in the transport data which is dominated by the crossing of the Landau bands at the Fermi level, corresponding to dE/dkz=0dE/dk_z=0, which occurs away from the HH point where Dirac fermions are expected.Comment: 3 figure

    Dirac fermions at the H point of graphite: Magneto-transmission studies

    Full text link
    We report on far infrared magneto-transmission measurements on a thin graphite sample prepared by exfoliation of highly oriented pyrolytic graphite. In magnetic field, absorption lines exhibiting a blue-shift proportional to sqrtB are observed. This is a fingerprint for massless Dirac holes at the H point in bulk graphite. The Fermi velocity is found to be c*=1.02x10^6 m/s and the pseudogap at the H point is estimated to be below 10 meV. Although the holes behave to a first approximation as a strictly 2D gas of Dirac fermions, the full 3D band structure has to be taken into account to explain all the observed spectral features.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Landau level spectroscopy of ultrathin graphite layers

    Full text link
    Far infrared transmission experiments are performed on ultrathin epitaxial graphite samples in a magnetic field. The observed cyclotron resonance-like and electron-positron-like transitions are in excellent agreement with the expectations of a single-particle model of Dirac fermions in graphene, with an effective velocity of c* = 1.03 x 10^6 m/s.Comment: 4 pages 4 figures Slight revisions following referees' comments. One figure modifie

    Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer

    Full text link
    We describe an infrared transmission study of a thin layer of bulk graphite in magnetic fields up to B = 34 T. Two series of absorption lines whose energy scales as sqrtB and B are present in the spectra and identified as contributions of massless holes at the H point and massive electrons in the vicinity of the K point, respectively. We find that the optical response of the K point electrons corresponds, over a wide range of energy and magnetic field, to a graphene bilayer with an effective inter-layer coupling 2\gamma_1, twice the value for a real graphene bilayer, which reflects the crystal ordering of bulk graphite along the c-axis. The K point electrons thus behave as massive Dirac fermions with a mass enhanced twice in comparison to a true graphene bilayer.Comment: 4 pages, 2 figure

    Polarization resolved magneto-Raman scattering of graphene-like domains on natural graphite

    Full text link
    The micro-Raman scattering response of a graphene-like location on the surface of bulk natural graphite is investigated both at T=\unit{4.2}{K} and at room temperature in magnetic fields up to 29 T. Two different polarization configurations, co-circular and crossed-circular, are employed in order to determine the Raman scattering selection rules. Several distinct series of electronic excitations are observed and we discuss their characteristic shapes and amplitudes. In particular, we report a clear splitting of the signals associated with the inter-Landau level excitations n+n-n\rightarrow+n. Furthermore, we observe the pronounced interaction of the zone-center E2g_{\text{2g}}-phonon with three different sets of electronic excitations. Possible origins for these graphene-like inclusions on the surface of bulk graphite are discussed.Comment: 10 pages, 11 figure

    Quadexciton cascade and fine structure splitting of the triexciton in a single quantum dot

    Full text link
    We report the properties of emission lines associated with the cascaded recombination of a quadexciton in single GaAlAs/AlAs quantum dots, studied by means of polarization-resolved photoluminescence and single-photon correlation experiments. It is found that photons which are emitted in a double-step 4X-3X process preserve their linear polarization, similarly to the case of conserved polarization of correlated photons in the 2X-X cascade. In contrast, an emission of either co-linear or cross-linear pairs of photons is observed for the 3X-2X cascade. Each emission line associated with the quadexciton cascade shows doublet structure in the polarization-resolved photoluminescence experiment. The maximum splitting is seen when the polarization axis is chosen along and perpendicular to the [110] crystallographic direction. This effect is ascribed to the fine structure splitting of the exciton and triexciton states in the presence of an anisotropic confining potential of ae dot. We also show that the splitting in the triexciton state surpasses that in the exciton state by a factor up to eight and their ratio scales with the energy distance between the 3X and X emission lines, thus, very likely, with a lateral size and/or a composition of the dot.Comment: submitted to Physical Review
    corecore