13 research outputs found

    Postoperative autovaccinotherapy for patients with gastric cancer and expression of some proteins in tumor tissue

    No full text
    Aim: To study the efficacy of autovaccine in the treatment of gastric cancer and significance of molecular factors having prognostic values for disease outcome to evaluate its efficacy in clinical setting. Patients and Methods: 150 patients with histologically proven adenocarcinoma of the stomach of stages II, III or IV were enrolled into study. 86 patients have been treated with autovaccine (AV) after operation. Expression of p53, Bcl-2, receptors of tyrosine kinase, vascular endothelial growth factor (VEGF), Π•-cadherin, Ξ±-catenin and Ξ²-catenin was determined in paraffin embedded tumor samples by means of immunohistochemical method with the use of respective monoclonal antibodies. Results: It was shown that application of AV has resulted in the increase of 3-year overall survival of patients having stage III of disease by more than 30%, but those having stage IV β€” only around 14%. The increase of 3-year overall survival of patients with metastases in lymph nodes (N1–2) was observed also in more than 30%. It has been suggested the optimal phenotype for vaccine application: Ρ€53(+), EGFR(+), HER-2 neu (+), Ξ²-catenin (+), VEGF(+) and Bcl-2(+) with no dependence on E-cadherin and Ξ±-catenin presence. Conclusion: It was determined that the best effect of AV application is observed in patients with category Π’3–4, poorly-differentiated tumors, metastases in lymph nodes (N1–2), but without distant metastases (М0). Gastric cancer patients with p53, EGFR, HER-2/neu, Ξ²-catenin, VEGF and Bcl-2-positive tumors are the favorable group for the treatment with AV in the adjuvant regime

    Influence of bacterial lectins on some reactions of nonspecific immunity in sarcoma 37 transplanted mice

    Get PDF
    The aim of this paper is to study preventive effect of cytotoxic lectin from Bacillus subtilis B-7025 on the tumor growth and nonspecific immunity in sarcoma 37 transplanted mice

    Influence of teichoic acid from S. Aureus on metabolic activity of macrophages and cytotoxic activity of splenocytes of mice bearing Lewis lung carcinoma

    No full text
    To investigate the effect of teichoic acid (TA) from the cell wall of S. aureus on some indices of immunological reactivity in mice bearing Lewis lung carcinoma (LLC). Methods: The teichoic acid at the doses of 1, 2 and 4 Β΅g/g of body weight has been administered subcutaneously simultaneously with tumor cells transplantation and in 7 days. The cytotoxic activity of peritoneal macrophages has been assessed by NBT-test. The splenocyte cytotoxic activity against the LLC cells has been tested by flow cytometry. The evaluation of tumor infiltration by lymphoid cells was carried out as well. Results: TA had no significant effect on oxidative metabolism of peritoneal macrophages in tumor bearing mice. Upon TA administration, the cytotoxic activity of splenocytes against the LLC cells has been augmented in a dose-dependent manner (at the TA dose of 4 Β΅g/g, 2-fold decrease of tumor growth and metastasis has been registered) and leads to decreased tumor infiltration by mononuclear cells. Conclusion: TA caused a dose dependent inhibition of growth and metastasis of LLC. It was supposed that TA can influence the tumor grows by activation of splenocytes cytotoxic activity.ЦСль: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ влияниС Ρ‚Π΅ΠΉΡ…ΠΎΠ΅Π²ΠΎΠΉ кислоты Staphylococcus aureus Wood 46 (ВК) Π½Π° иммунологичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ с ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠΎΠΉ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π² качСствС ΠΌΠΎΠ΄Π΅Π»ΠΈ использовали ΠΏΠ΅Ρ€Π΅Π²ΠΈΠ²Π°Π΅ΠΌΡƒΡŽ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡƒ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ. Π’Π΅ΠΉΡ…ΠΎΠ΅Π²ΡƒΡŽ кислоту S. aureus Wood 46 ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΡ€Ρ‡ΠΈΠ±Π°Π»ΡŒΠ΄Π°. ΠšΠΈΡΠ»ΠΎΡ€ΠΎΠ΄Π·Π°Π²ΠΈΡΠΈΠΌΡ‹ΠΉ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡŽ нитросинСго тСтразолия (НБВ-тСст). Π¦ΠΈΡ‚ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ сплСноцитов опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ВК ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»Π° дозозависимоС влияниС Π½Π° рост ΠΈ мСтастазированиС ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π›ΡŒΡŽΠΈΡ. Π£ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… ВК Π² Π΄ΠΎΠ·Π΅ 4 ΠΌΠΊΠ³/Π³, Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π±Ρ‹Π»ΠΈ Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚ окончания экспСримСнта Π² 4 Ρ€Π°Π·a мСньшС ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ, мСтастазы Π² Π»Π΅Π³ΠΊΠΈΡ… отсутствовали. ВК Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ стимулировала кислородзависимый ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ². ΠžΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ Π΄ΠΎΠ·ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ цитотоксичСской активности сплСноцитов: ΠΏΡ€ΠΈ использовании ВК Π² Π΄ΠΎΠ·Π΅ 4 ΠΌΠΊΠ³/Π³ цитотоксичСская Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ сплСноцитов Ρƒ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΎΠΏΡ‹Ρ‚Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π² 2 Ρ€Π°Π·Π° ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…-носитСлСй ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ВК ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ дозозависимоС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π½ΠΎΠ΅ влияниС Π½Π° рост ΠΈ мСтастазированиС ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ. Одним ΠΈΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΎΠΏΠΎΡΡ€Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… супрСссорноС дСйствиС ВК Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΉ рост, ΠΌΠΎΠΆΠ½o ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ цитотоксичСской активности сплСноцитов

    Antitumor and antimetastatic activities of vaccine prepared from cisplatin-resistant lewis lung carcinoma

    No full text
    To study antitumor and antimetastatic activities of antitumor vaccine (ATV) prepared from cisplatin (CP) sensitive and resistant strains of Lewis lung carcinoma (LLC). Methods: The inhibition of tumor growth, and the mean survival time of the tumor-bearing animals, the number and the volume of metastases were measured as the indices of ATV efficacy. The activity of cytotoxic T-lymphocytes and natural killer cells, peritoneal macrophages (Mph), the level of tumor necrosis factor and the total proteolytic activity of blood plasma (PA) were assessed. Results: ATV from CP resistant LLC prepared using cytolectin (CL) of Π’. subtilis Π’-7025 significantly inhibited growth of CP resistant tumors (by 52%) and increased mean survival time (MST) of animals (by 44.6%). The index of metastasis inhibition for ATV prepared from CP sensitive or resistant LLC was 154.5% and 227.0%, respectively. In all vaccine-treated animals, Mph activity was shown to be significantly increased. In spite of high antitumor and antimetastatic effects of ATV prepared from CP resistant LLC, PA in plasma of animals inoculated with CP resistant LLC was increased significantly upon vaccine administration

    Elevation of efficacy of cancer vaccine combined with interferon and inducer of endogeneous interferon synthesis amixin

    No full text
    Aim: To study in vivo efficacy of combined administration of cancer vaccine (CV), interferon (IFN) and inducer of endogenous IFN β€” amixin. Materials and Methods: Sarcoma-37 cells were transplanted to female Balb/c mice. For the treatment, CV prepared from sarcoma-37 cells with the use of cytotoxic lectines from B. subtilis B-7025, murine IFN and amixin or their combinations were used. IFN production, content of circulating immune complexes and level of specific IgG antibodies in blood serum were determined by standard immunologic methods. Results: Using solid form of sarcoma-37 it has been shown that introduction of IFN and amixin significantly elevated efficacy of vaccine therapy, in particular index of tumor growth inhibition reach 89.2% and 81.7%. Upon combined use of CV and IFN or CV and amixin (25 mg/kg) respectively. Significant prolongation of average life span of the animals treated with CV and IFN or CV and amixin (25 mg/kg) has been registered (up to 92.7 Β± 10.4 and 95.0 Β± 6.2 days respectively, vs 46.8 Β± 1.5 days for control animals). Conclusion: Obtained results have shown expediency of the development of schemes for combined introduction of CV with exogenous IFN, and with inducer of endogenous IFN (amixin) for elevation of efficacy of vaccine therapy.ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π² экспСримСнтС ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ схСмы ввСдСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ (CV) с ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½ΠΎΠΌ (ИЀН) ΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€ΠΎΠΌ эндогСнного ИЀН β€” амиксином. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: саркому-37 трансплантировали ΠΌΡ‹ΡˆΠ°ΠΌ-самкам Balb/c. Для лСчСния использовали CV, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ саркомы-37 с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ цитотоксичСских Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² B. subtilis B-7025, ΠΌΡ‹ΡˆΠΈΠ½Ρ‹ΠΉ ИЀН (1000 Π΅Π΄.) ΠΈ амиксин (10 ΠΈ 25 ΠΌΠ³/ΠΊΠ³). Π˜ΠΌΠΌΡƒΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ исслСдования Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ Ρ‚ΠΈΡ‚Ρ€ΠΎΠ² ИЀН, количСства Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… комплСксов ΠΈ уровня спСцифичСских ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… IgG-Π°Π½Ρ‚ΠΈΡ‚Π΅Π». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ солидной Ρ„ΠΎΡ€ΠΌΡ‹ саркомы-37 ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ИЀН ΠΈ амиксина достовСрно способствуСт ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ, ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ использовании CV ΠΈ ИЀН индСкс тормоТСния ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ роста (ИВО) достигал 89,2%; ΠΏΡ€ΠΈ сочСтании CV ΠΈ амиксина (25 ΠΌΠ³/ΠΊΠ³) ИВО составил 81,7%. ЗарСгистрировано сущСствСнноС ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ срСднСй ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΆΠΈΠ·Π½ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠΈΡ… CV с ИЀН ΠΈΠ»ΠΈ амиксином (25 ΠΌΠ³/ΠΊΠ³), Π΄ΠΎ 92,7 Β± 10,4 ΠΈ 95,0 Β± 6,2 сут соотвСтствСнно, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Π°ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΡ‹ΡˆΠ΅ΠΉ (46,8 Β± 1,5 сут, p < 0,05). Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ пСрспСктивности Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… схСм ввСдСния CV ΠΊΠ°ΠΊ с ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ экзогСнного ИЀН, Ρ‚Π°ΠΊ ΠΈ с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€ΠΎΠΌ эндогСнного ИЀН (амиксин), Ρ‡Ρ‚ΠΎ позволяСт ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Effect of the visible light irradiation of fullerene containing composites on the ros generation and the viability of tumor cells

    No full text
    Aim: To study the effect of fullerene-containing composites, irradiated by visible light, on the radical oxygen species (ROS) generation in thymocytes, ascitic cells from Erlich’s tumor and leukemia cells L1210; to investigate viability of these cells in the presence of fullerene-containing composites under irradiation conditions. Materials and Methods: The viability of cells was evaluated by staining with 0.4% solution of the trypan blue; ROS were detected with the use of electron paramagnetic resonance (EPR) spectroscopy and spin traps; solutions of fullerene-containing composites were irradiated with mercury-vapor lamp. Results: We demonstrated that under irradiation conditions fullerene-containing composites increase the rate of ROS generation and decrease the number of viable tumor cells. Conclusions: The obtained data allow to consider the fullerene-containing composites as potential agents for photodynamic therapy.ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ влияниС фуллСрСнсодСрТащих ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ², ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΈΠΌΡ‹ΠΌ свСтом, Π½Π° Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода (РЀК) Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ‚ΠΈΠΌΠΎΡ†ΠΈΡ‚ΠΎΠ², асцитного Ρ€Π°ΠΊΠ° Π­Ρ€Π»ΠΈΡ…Π° ΠΈ Π»Π΅ΠΉΠΊΠΎΠ·Π° L1210. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ этих ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² присутствии ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… фуллСрСнсодСрТащих ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ². ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ опрСдСляли с использованиСм 0,4 % раствора Ρ‚Ρ€ΠΈΠΏΠ°Π½ΠΎΠ²ΠΎΠ³ΠΎ синСго; РЀК рСгистрировали ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ЭПР- спСктроскопии ΠΈ спиновых Π»ΠΎΠ²ΡƒΡˆΠ΅ΠΊ; ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ€Π°cΡ‚Π²ΠΎΡ€ΠΎΠ² фуллСрСнсодСрТащих ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ осущСствляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Ρ‚ΡƒΡ‚Π½ΠΎΠΉ Π»Π°ΠΌΠΏΡ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ фуллСрСнсодСрТащиС ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ ΠΏΡ€ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ°ΡŽΡ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ гСнСрирования РЀК ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ количСство ТизнСспособных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ фуллСрСнсодСрТащиС ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ ΠΊΠ°ΠΊ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ для фотодинамичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Experimental study of the efficacy of combined use of cancer vaccine and interferon

    No full text
    Aim: To study in in vivo model the efficacy of combined scheme of administration of cancer vaccine (CV) and interferon (IFN). Materials and Methods: Lewis lung carcinoma (LLC) was transplanted to male C57Bl mice. For treatment, CV prepared from LLC cells with the use of cytotoxic lectins of B. subtilis B-7025, and preparation of murine IFN-alpha were used. Therapeutic effect was evaluated by measurement of tumor volume and analysis of average life span (ALS) of treated animals. Immunologic study included determination of antitumor cytotoxicity of T-lymphocytes (CTL) and natural killer (NK) cells by radiometric method, functional activity of peritoneal macrophages (MP) β€” by colorimetric test with nitroazole blue, and evaluation of titers of tumor necrosis factor (TNF) and interleukins-1 and -2 (IL-1, 2). Results: It has been shown that the use of IFN preparation significantly elevated efficacy of vaccine therapy of solid form of LLC: duration of latent period of tumor growth elevated by 25%, ALS β€” by 28%, index of tumor growth inhibition β€” by 35–40%. Upon combined use of CV and IFN, significant activation of the cells β€” effectors of nonspecific immune defense (MP), and specific one (CTL) was observed. Conclusion: The obtained results evidence on perspectiveness of the development of combined schemes of administration of CV and IFN for elevation of the efficacy of vaccine therapy.ЦСль: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π² экспСримСнтС ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ схСмы ввСдСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ (ΠŸΠ’) ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½Π° (ИЀН). ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡƒ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ (ΠšΠ›Π›) трансплантировали ΠΌΡ‹ΡˆΠ°ΠΌ-самцам C57Bl. Для лСчСния использовали ΠŸΠ’, ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠšΠ›Π› с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ цитотоксичСских Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² B. subtilis B-7025, ΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΠΌΡ‹ΡˆΠΈΠ½ΠΎΠ³ΠΎ ИЀН. ВСрапСвтичСский эффСкт ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ измСрСния объСма солидной ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° срСднСй ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΆΠΈΠ·Π½ΠΈ ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Π˜ΠΌΠΌΡƒΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ цитотоксичности Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ² (Π¦Π’Π›) ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠΈΠ»Π»Π΅Ρ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (ПКК) радиомСтричСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ; Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² (ΠœΡ„) Π² колоримСтричСском НБВ-тСстС; ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΈΡ‚Ρ€ΠΎΠ² Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ (ЀНО), ΠΈΠ½Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½ΠΎΠ²-1 ΠΈ -2. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ использованиС ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ИЀН сущСствСнно ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ солидной Ρ„ΠΎΡ€ΠΌΡ‹ модСльной ΠšΠ›Π›: Π½Π° 25% ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π»Π°Ρ‚Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°, Π½Π° 28% β€” срСдняя ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΆΠΈΠ·Π½ΠΈ ΠΌΡ‹ΡˆΠ΅ΠΉ, Π½Π° 35–40% β€” индСкс тормоТСния ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ роста. ΠŸΡ€ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠŸΠ’ ΠΈ ИЀН ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ-эффСкторов ΠΊΠ°ΠΊ нСспСцифичСской (ΠœΡ„), Ρ‚Π°ΠΊ ΠΈ спСцифичСской (Π¦Π’Π›) ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ пСрспСктивности Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… схСм ввСдСния ΠŸΠ’ с ИЀН, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²Π°ΠΊΡ†ΠΈΠ½ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Toxic effect of C₆₀ fullerene-doxorubicin complex towards tumor and normal cells in vitro

    No full text
    Creation of new nanostructures possessing high antitumor activity is an important problem of modern biotechnology. Aim. To evaluate cytotoxicity of created complex of pristine C₆₀ fullerene with the anthracycline antibiotic doxorubicin (Dox), as well as of free C₆₀ fullerene and Dox, towards different cell types – tumor, normal immunocompetent and hepatocytes. Methods. Measurement of size distribution for particles in C₆₀ + Dox mixture was performed by a dynamic light scattering (DLS) technique. Toxic effect of C₆₀+ Dox complex in vitro towards tumor and normal cells was studied using the MTT assay. Results. DLS experiment demonstrated that the main fraction of the particles in C₆₀+ Dox mixture had a diameter in the range of about 132 nm. The toxic effect of C₆₀ + Dox complex towards normal (lymphocytes, macrophages, hepatocytes) and tumor (Ehrlich ascites carcinoma, leukemia L1210, Lewis lung carcinoma) cells was decreased by ~10–16 % and ~7–9 %, accordingly, compared with the same effect of free Dox. Conclusions. The created C₆₀ + Dox composite may be considered as a new pharmacological agent that kills effectively tumor cells in vitro and simultaneously prevents a toxic effect of the free form of Dox on normal cells.БтворСння Π½ΠΎΠ²ΠΈΡ… наноструктур Π· високою ΠΏΡ€ΠΎΡ‚ΠΈΠΏΡƒΡ…Π»ΠΈΠ½Π½ΠΎΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ Ρ” ваТливою ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΡŽ сучасної Π±Ρ–ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ—. ΠœΠ΅Ρ‚Π°. ΠžΡ†Ρ–Π½ΠΈΡ‚ΠΈ Ρ†ΠΈΡ‚ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π½Ρ–ΡΡ‚ΡŒ створСного комплСксу Ρ„ΡƒΠ»Π΅Ρ€Π΅Π½Ρƒ C₆₀ Π· Π°Π½Ρ‚ΠΈΠ±Ρ–ΠΎΡ‚ΠΈΠΊΠΎΠΌ Π°Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΊΠ»Ρ–Π½ΠΎΠ²ΠΎΠ³ΠΎ ряду доксорубіцином (Докс) Π½Π° Ρ€Ρ–Π·Π½Ρ– Ρ‚ΠΈΠΏΠΈ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ (ΠΏΡƒΡ…Π»ΠΈΠ½Π½Ρ–, Ρ–ΠΌΡƒΠ½ΠΎΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½i Ρ– Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚ΠΈ) Ρ‚Π° порівняти ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π· Ρ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡŽ Π΄Ρ–Ρ”ΡŽ Π²Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„ΡƒΠ»Π΅Ρ€Π΅Π½Ρƒ C₆₀ Ρ– Докс Π·Π° ΡƒΠΌΠΎΠ² in vitro. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π» Π·Π° Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΠΌ частинок Ρƒ C₆₀+ Докс ΡΡƒΠΌΡ–ΡˆΡ– Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·ΡΡ–ΡŽΠ²Π°Π½Π½Ρ світла (Π”Π Π‘). Воксичний Π΅Ρ„Π΅ΠΊΡ‚ комплСксу C₆₀+ Докс Ρ‰ΠΎΠ΄ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Ρ– ΠΏΡƒΡ…Π»ΠΈΠ½Π½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ in vitro Π· використанням МВВ-тСсту. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ВстановлСно, Ρ‰ΠΎ Π² ΡΡƒΠΌΡ–ΡˆΡ– C₆₀+ Докс Π² основному Ρ€Π΅Ρ”ΡΡ‚Ρ€ΡƒΡŽΡ‚ΡŒΡΡ частинки Π· Π΄Ρ–Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 132 Π½ΠΌ. Воксична дія комплСксу C₆₀+ Докс Ρ‰ΠΎΠ΄ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΈΡ… (Π»Ρ–ΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΈ, ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚ΠΈ) Ρ– ΠΏΡƒΡ…Π»ΠΈΠ½Π½ΠΈΡ… (асцитна ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° Π•Ρ€Π»Ρ–Ρ…Π°, Π»Π΅ΠΉΠΊΠΎΠ· L1210, ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° Π»Π΅Π³Π΅Π½Ρ– Π›ΡŒΡŽΡ—Ρ) ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ виявилася мСншою ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·Π½ΠΎ Π½Π° 10–16 Ρ– 7–9 % Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ порівняно Ρ–Π· Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ Π²Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ Докс. Висновки. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΠΉ комплСкс C₆₀ + Докс ΠΌΠΎΠΆΠ½Π° розглядати як Π½ΠΎΠ²ΠΈΠΉ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚, Ρ‰ΠΎ Π·Π° ΡƒΠΌΠΎΠ² in vitro Π·Π΄Π°Ρ‚Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ Π·Π½ΠΈΡ‰ΡƒΠ²Π°Ρ‚ΠΈ ΠΏΡƒΡ…Π»ΠΈΠ½Π½Ρ– ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ Ρ– одночасно Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°Ρ‚ΠΈ ΠΏΠΎΠ±Ρ–Ρ‡Π½ΠΈΠΌ токсичним Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌ, ΠΏΡ€ΠΈΡ‚Π°ΠΌΠ°Π½Π½ΠΈΠΌ Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΡ‚ΠΈΠΏΡƒΡ…Π»ΠΈΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Докс Ρ‰ΠΎΠ΄ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΠΊΠ»Ρ–Ρ‚ΠΈΠ½.Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… наноструктур с высокой ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ являСтся Π²Π°ΠΆΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ соврСмСнной Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ЦСль. ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ Ρ†ΠΈΡ‚ΠΎΡ‚ΠΎΠΊΡΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ созданного комплСкса Ρ„ΡƒΠ»Π»Π΅Ρ€Π΅Π½Π° C₆₀ с Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠΌ Π°Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΊΠ»ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ряда доксорубицином (Докс) Π½Π° Ρ€Π°Π·Π½Ρ‹Π΅ Ρ‚ΠΈΠΏΡ‹ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅, ΠΈΠΌΠΌΡƒΠ½ΠΎΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Π΅, Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚Ρ‹) ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ с токсичСским дСйствиСм свободного Ρ„ΡƒΠ»Π»Π΅Ρ€Π΅Π½Π° C₆₀и Докс Π² условиях in vitro. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. РаспрСдСлСниС ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρƒ частиц Π² смСси C₆₀ + Докс измСряли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ динамичСского рассСивания свСта (Π”Π Π‘). ВоксичСский эффСкт комплСкса C₆₀ + Докс Π½Π° Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ in vitro ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ с использованиСм МВВ-тСста. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Π² смСси C₆₀ + Докс Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² основном частицы с Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 132 Π½ΠΌ. ВоксичСскоС дСйствиС комплСкса C₆₀+ Докс ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ (Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹, ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, Π³Π΅ΠΏΠ°Ρ‚ΠΎΡ†ΠΈΡ‚Ρ‹) ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΌ (асцитная ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° Π­Ρ€Π»ΠΈΡ…Π°, Π»Π΅ΠΉΠΊΠΎΠ· L1210, ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π›ΡŒΡŽΠΈΡ) ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌ оказалось мСньшим Π½Π° ~ 10–16 ΠΈ 7–9 % соотвСтствСнно ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с дСйствиСм свободного Докс. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ комплСкс C₆₀ + Докс ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Π½ΠΎΠ²Ρ‹ΠΉ фармакологичСский ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚, способный Π² условиях in vitro эффСктивно ΡƒΠ½ΠΈΡ‡Ρ‚ΠΎΠΆΠ°Ρ‚ΡŒ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Ρ‚ΡŒ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Π΅ токсичСскиС эффСкты, присущиС Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΌΡƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Докс ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ

    Cytotoxic activity of immune cells following administration of xenogeneic cancer vaccine in mice with melanoma B-16

    No full text
    Aim: To study the effects of xenogeneic cancer vaccine (XCV) developed on the basis of nervous tissue antigen from rat embryo of late gestation period and protein-containing metabolite of Bacillus subtilis with molecular weight of 70 kDa, on specific and unspecific antitumor reactions of cellular and humoral chains of immune system, and to analyze possible mechanisms of its antimetastatic action. Materials and Methods: XCV was administered triply with 3-day intervals after surgical removal of experimental melanoma Π’-16 in C57Bl/6 mice. Cytotoxic activity (CTA) of splenocytes against target cells К-562 as well as CTA of splenocytes, peritoneal macrophages (PM) and blood serum against melanoma Π’-16 target cells were determined using МВВ test. The content of circulating immune complexes (CIC) in blood serum was evaluated by precipitation reaction. Results: Immunologic effects of XCV vaccination in experimental animals with surgically removed melanoma B-16 in comparison with similarly treated unvaccinated mice were as follows: prevention of medium molecular weight CIC accumulation in blood serum during all observation period, significant increase (Ρ€ < 0.05) of CTA of effectors of unspecific antitumor immunity (natural killer cells β€” NK β€” by 25.5 Β± 1.7 vs 12.5 Β± 5.4%, and PM β€” by 37.3 Β± 0.6 vs 32.0 Β± 0.9%, respectively) at 37th day after the surgery, and also preservation of functional activity of specific cytotoxic lymphocytes at the level of intact control. Conclusion: The results of the study allow propose that antimetastatic effect of XCV vaccination could be based on increased CTA of NK and PM, and preservation of CTL functional activity at late terms after surgical removal of B-16 primary tumors. Key Words: xenogeneic cancer vaccine, melanoma Π’-16, natural killer cells, macrophages, cytotoxic lymphocytes, cytotoxic activity, antimetastatic activity

    Use of xenogeneic vaccine modified with embryonal nervous tissue antigens in the treatment of B16‑melanoma-bearing mice

    No full text
    The aim of the work was experimental study of anticancer efficacy of xenogeneic cancer vaccine (XCV) developed on the basis of rat embryonic nervous tissue and protein-containing metabolite of Bacillus subtilis Π’-7015 (70 kDa), in Π’-16 melanoma-bearing Π‘57Bl/6 mice. Methods: Immunological methods and methods of experimental oncology were used. Effects of XCV on primary and secondary organs of immune system of experimental animals, its anticancer and antimetastatic efficacy were evaluated. Results: It has been shown that XCV did not induced toxic effects on organism, and did not caused inflammatory reactions. The relation between the degree of XCV anticancer efficacy with the regimen of its use and the presence of primary tumor has been analyzed. It has been demonstrated that the developed XCV possesses significant antimetastatic activity if it is used after surgical removal of the primary tumor: in this case lung metastasis inhibition index reached 97.4%. Conclusion: High immunogenecity of new XCV creates perspectives for detailed study of its mechanisms of action. Key Words: oncofetal antigens, xenogeneic cancer vaccine, Π’-16 melanoma, immunotoxicity, effectors of anticancer defence
    corecore