21 research outputs found

    Nanowire-based very-high-frequency electromechanical resonator

    Get PDF
    Fabrication and readout of devices with progressively smaller size, ultimately down to the molecular scale, is critical for the development of very-high-frequency nanoelectromechanical systems (NEMS). Nanomaterials, such as carbon nanotubes or nanowires, offer immense prospects as active elements for these applications. We report the fabrication and measurement of a platinum nanowire resonator, 43 nm in diameter and 1.3 µm in length. This device, among the smallest NEMS reported, has a fundamental vibration frequency of 105.3 MHz, with a quality factor of 8500 at 4 K. Its resonant motion is transduced by a technique that is well suited to ultrasmall mechanical structures

    Competing Interactions in DNA Assembly on Graphene

    Get PDF
    We study the patterns that short strands of single-stranded DNA form on the top graphene surface of graphite. We find that the DNA assembles into two distinct patterns, small spherical particles and elongated networks. Known interaction models based on DNA-graphene binding, hydrophobic interactions, or models based on the purine/pyrimidine nature of the bases do not explain our observed crossover in pattern formation. We argue that the observed assembly behavior is caused by a crossover in the competition between base-base pi stacking and base-graphene pi stacking and we infer a critical crossover energy of eV. The experiments therefore provide a projective measurement of the base-base interaction strength

    Carbon Nanotube Solar Cells

    Get PDF
    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement

    Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators

    No full text
    Ultraminiaturized mass spectrometers are highly sought-after tools, with numerous applications in areas such as environmental protection, exploration, and drug development. We realize atomic scale mass sensing using doubly clamped suspended carbon nanotube nanomechanical resonators, in which their single-electron transistor properties allows self-detection of the nanotube vibration. We use the detection of shifts in the resonance frequency of the nanotubes to sense and determine the inertial mass of atoms as well as the mass of the nanotube. This highly sensitive mass detection capability may eventually enable applications such as on-chip detection, analysis, and identification of compounds

    Scaling analysis of CNSC performance.

    No full text
    <p>The CNSCs characteristics are determined by the metallic and semiconducting carbon nanotube densities, with symbols corresponding to the cells as in the legend for <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0037806#pone-0037806-g002" target="_blank">figure 2</a>. a) . b) .</p

    Carbon nanotube solar cells; comparison to Dye-Sensitized Solar Cells (DSSC), construction, and energeticts.

    No full text
    <p>a) DSSC. b) Carbon Nanotube Solar Cell, CNSC. c) Layout of a CNSC. The top and bottom glass slides (light blue) are covered in carbon nanotube films which are electrically connected by the iodide-triiodide electrolyte (light red) that is contained by the silicone separator (white). The top film (green) is the photoactive electrode, while the bottom electrode (grey) is the counter electrode. The inset is an Atomic Force Micrograph of the height of a 2×2 m section of a carbon nanotube film. d) Band diagram of the CNSC.</p
    corecore