118 research outputs found

    Resonant tunneling in a Luttinger liquid for arbitrary barrier transmission

    Full text link
    A numerically exact dynamical quantum Monte Carlo approach has been developed and applied to transport through a double barrier in a Luttinger liquid with arbitrary transmission. For strong transmission, we find broad Fabry-Perot Coulomb blockade peaks, with a lineshape parametrized by a single parameter, but at sufficiently low temperatures, non-Lorentzian universal lineshapes characteristic of coherent resonant tunneling emerge, even for strong interactions. For weak transmission, our data supports the recently proposed correlated sequential tunneling picture and is consistent with experimental results on intrinsic nanotube dots.Comment: 4 pages, 4 figure

    Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators

    Get PDF
    We explore an electrostatic mechanism for tuning the nonlinearity of nanomechanical resonators and increasing their dynamic range for sensor applications. We also demonstrate tuning the resonant frequency of resonators both upward and downward. A theoretical model is developed that qualitatively explains the experimental results and serves as a simple guide for design of tunable nanomechanical devices

    Dynamic range of nanotube- and nanowire-based electromechanical systems

    Get PDF
    Nanomechanical resonators with high aspect ratio, such as nanotubes and nanowires are of interest due to their expected high sensitivity. However, a strongly nonlinear response combined with a high thermomechanical noise level limits the useful linear dynamic range of this type of device. We derive the equations governing this behavior and find a strong dependence [[proportional]dsqrt((d/L)[sup 5])] of the dynamic range on aspect ratio

    Basins of attraction of a nonlinear nanomechanical resonator

    Get PDF
    We present an experiment that systematically probes the basins of attraction of two fixed points of a nonlinear nanomechanical resonator and maps them out with high resolution. We observe a separatrix which progressively alters shape for varying drive strength and changes the relative areas of the two basins of attraction. The observed separatrix is blurred due to ambient fluctuations, including residual noise in the drive system, which cause uncertainty in the preparation of an initial state close to the separatrix. We find a good agreement between the experimentally mapped and theoretically calculated basins of attraction

    Nanowire-based very-high-frequency electromechanical resonator

    Get PDF
    Fabrication and readout of devices with progressively smaller size, ultimately down to the molecular scale, is critical for the development of very-high-frequency nanoelectromechanical systems (NEMS). Nanomaterials, such as carbon nanotubes or nanowires, offer immense prospects as active elements for these applications. We report the fabrication and measurement of a platinum nanowire resonator, 43 nm in diameter and 1.3 µm in length. This device, among the smallest NEMS reported, has a fundamental vibration frequency of 105.3 MHz, with a quality factor of 8500 at 4 K. Its resonant motion is transduced by a technique that is well suited to ultrasmall mechanical structures

    Hooge's Constant of Carbon Nanotube Field Effect Transistors

    Full text link
    The 1/f noise in individual semiconducting carbon nanotubes (s-CNT) in a field effect transistor configuration has been measured in ultra-high vacuum and following exposure to air. The amplitude of the normalized current spectral noise density is independent of source-drain current, indicating the noise is due to mobility rather than number fluctuations. Hooge's constant for s-CNT is found to be 9.3 plus minus 0.4x10^-3. The magnitude of the 1/f noise is substantially degreased by exposing the devices to air

    Correlated tunneling in intramolecular carbon nanotube quantum dots

    Get PDF
    We investigate correlated electronic transport in single-walled carbon nanotubes with two intramolecular tunneling barriers. We suggest that below a characteristic temperature the long range nature of the Coulomb interaction becomes crucial to determine the temperature dependence of the maximum G_max of the conductance peak. Correlated sequential tunneling dominates transport yielding the power-law G_max ~ T^{\alpha_{end-end}-1}, typical for tunneling between the ends of two Luttinger liquids. Our predictions are in agreement with recent measurements

    Spin effects in transport through non-Fermi liquid quantum dots

    Full text link
    The current-voltage characteristic of a one dimensional quantum dot connected via tunnel barriers to interacting leads is calculated in the region of sequential tunneling. The spin of the electrons is taken into account. Non-Fermi liquid correlations implying spin-charge separation are assumed to be present in the dot and in the leads. It is found that the energetic distance of the peaks in the linear conductance shows a spin-induced parity effect at zero temperature T. The temperature dependence of the positions of the peaks depends on the non-Fermi liquid nature of the system. For non-symmetric tunnel barriers negative differential conductances are predicted, which are related to the participation in the transport of collective states in the quantum dot with larger spins. Without spin-charge separation the negative differential conductances do not occur. Taking into account spin relaxation destroys the spin-induced conductance features. The possibility of observing in experiment the predicted effects are briefly discussed.Comment: 15 pages, 16 figures, accepted for publication on Physical Review

    Ballistic Phonon Thermal Transport in Multi-Walled Carbon Nanotubes

    Get PDF
    We report electrical transport experiments using the phenomenon of electrical breakdown to perform thermometry that probe the thermal properties of individual multi-walled nanotubes. Our results show that nanotubes can readily conduct heat by ballistic phonon propagation, reaching a quantum-mechanical limit to thermal conductance. We determine the thermal conductance quantum, the ultimate limit to thermal conductance for a single phonon channel, and find good agreement with theoretical calculations. Moreover, our results suggest a breakdown mechanism of thermally activated C-C bond breaking coupled with the electrical stress of carrying ~10^12 A/m^2. We also demonstrate a current-driven self-heating technique to improve the conductance of nanotube devices dramatically

    Control of spin in quantum dots with non-Fermi liquid correlations

    Full text link
    Spin effects in the transport properties of a quantum dot with spin-charge separation are investigated. It is found that the non-linear transport spectra are dominated by spin dynamics. Strong spin polarization effects are observed in a magnetic field. They can be controlled by varying gate and bias voltages. Complete polarization is stable against interactions. When polarization is not complete, it is power-law enhanced by non-Fermi liquid effects.Comment: 4 pages, 4 figure
    • …
    corecore