16 research outputs found

    Identification of key genes for carcinogenic pathways associated with colorectal adenoma-to-carcinoma progression

    Get PDF
    Colorectal adenomas form a biologically and clinically distinct intermediate stage in development of colorectal cancer (CRC) from normal colon epithelium. Only 5% of adenomas progress into adenocarcinomas, indicating that malignant transformation requires other biological alterations than those involved in adenoma formation. The present study aimed to explore which cancer-related biological processes are affected during colorectal adenoma-to-carcinoma progression and to identify key genes within these pathways that can serve as tumor markers for malignant transformation. The activity of 12 cancer-related biological processes was compared between 37 colorectal adenomas and 31 adenocarcinomas, using the pathway analysis tool Gene Set Enrichment Analysis. Expression of six gene sets was significantly increased in CRCs compared to adenomas, representing chromosomal instability, proliferation, differentiation, invasion, stroma activation, and angiogenesis. In addition, 18 key genes were identified for these processes based on their significantly increased expression levels. For AURKA and PDGFRB, increased mRNA expression levels were verified at the protein level by immunohistochemical analysis of a series of adenomas and CRCs. This study revealed cancer-related biological processes whose activities are increased during malignant transformation and identified key genes which may be used as tumor markers to improve molecular characterization of colorectal tumors

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    High Performance Centre (Design thesis)

    No full text
    Model [1:5:10] of a final year architectural student's proposal; design thesis of the High Performance Centre, University of Pretoria. Model built by 3rd year B.Sc. (Arch) students, University of Pretoria, 2006

    Limited mass-independent individual variation in resting metabolic rate in a wild population of snow voles (Chionomys nivalis)

    No full text
    Resting metabolic rate (RMR) is a potentially important axis of physiological adaptation to the thermal environment. However, our understanding of the causes and consequences of individual variation in RMR in the wild is hampered by a lack of data, as well as analytical challenges. RMR measurements in the wild are generally characterized by large measurement errors and a strong dependency on mass. The latter is problematic when assessing the ability of RMR to evolve independently of mass. Mixed models provide a powerful and flexible tool to tackle these challenges, but they have rarely been used to estimate repeatability of mass-independent RMR from field data. We used respirometry to obtain repeated measurements of RMR in a long-term study population of snow voles (Chionomys nivalis) inhabiting an environment subject to large circadian and seasonal fluctuations in temperature. Using both uni- and bivariate mixed models, we quantify individual repeatability in RMR and decompose repeatability into mass-dependent and mass-independent components, while accounting for measurement error. RMR varies among individuals, i.e. is repeatable (R=0.46), and strongly co-varies with BM. Indeed, much of the repeatability of RMR is attributable to individual variation in BM, and the repeatability of mass-independent RMR is reduced by 41% to R=0.27. These empirical results suggest that the evolutionary potential of RMR independent of mass may be severely constrained. This study illustrates how to leverage bivariate mixed models to model field data for metabolic traits, correct for measurement error, and decompose the relative importance of mass-dependent and mass-independent physiological variation

    Oral cavity cancer in two young patients with ulcerative colitis, a case report

    No full text
    AbstractPatients with Inflammatory Bowel Disease (IBD) are at increased risk of developing malignancies. IBD patients with oral cavity cancer may have reduced survival compared with the general population. This article describes two IBD patients, non-smokers, on long-term use of mesalazine with the development of oral cavity cancer. In IBD the clinician should be aware of possible head and neck malignancies and in case of doubt a biopsy should be performed, even in the absence of standard risk factors

    Intratumor Heterogeneity of K-Ras and p53 Mutations among Human Colorectal Adenomas Containing Early Cancer

    No full text
    The molecular pathways and the timing of genetic events during human colorectal carcinogenesis are still not fully understood. We have addressed the intratumor heterogeneity of the mutational status of the k‐ras oncogene and of the p53 oncosuppressor gene during the adenoma–carcinoma sequence by investigating 26 human colorectal adenomas containing early cancer. An intratumor comparative analysis was obtained among the adenomatous and carcinomatous component pairs. Additionally, we have analyzed 17 adenomas having cancer in the near vicinity. The adenomatous components of the adenomas containing early cancer and the adenomas having cancer in the near vicinity had comparable frequencies for k‐ras mutations (28 and 47%) but different for p53 mutations (52 and 7%, p‐value = 0.01). Interestingly, the adenomatous and carcinomatous components of the adenomas containing early cancer were rarely heterogeneous for the k‐ras mutational status (only in 13% of the cases) but were characterized by heterogeneity of the p53 status in 59% of the cases (p‐value < 0.01). In addition, the mutations of p53 for the adenomatous components of the adenomas containing early cancer were statistically significantly associated with severe dysplasia (p-value = 0.01). Intratumor homogeneity of k‐ras status during the human colorectal adenoma–carcinoma sequence suggests that the role of k‐ras is more related to tumor initiation than to tumor progression. On the contrary, intratumor heterogeneity of p53 mutations indicates that the type of the p53 mutations may also be relevant for selection and expansion of new subclones leading to tumor progression

    Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism

    Get PDF
    BACKGROUND: Colorectal cancer develops in a multi-step manner from normal epithelium, through a pre-malignant lesion (so-called adenoma), into a malignant lesion (carcinoma), which invades surrounding tissues and eventually can spread systemically (metastasis). It is estimated that only about 5% of adenomas do progress to a carcinoma. AIM: The present study aimed to unravel the biology of adenoma to carcinoma progression by mRNA expression profiling, and to identify candidate biomarkers for adenomas that are truly at high risk of progression. METHODS: Genome-wide mRNA expression profiles were obtained from a series of 37 colorectal adenomas and 31 colorectal carcinomas using oligonucleotide microarrays. Differentially expressed genes were validated in an independent colorectal gene expression data set. Gene Set Enrichment Analysis (GSEA) was used to identify altered expression of sets of genes associated with specific biological processes, in order to better understand the biology of colorectal adenoma to carcinoma progression. RESULTS: mRNA expression of 248 genes was significantly different, of which 96 were upregulated and 152 downregulated in carcinomas compared to adenomas. Classification of adenomas and carcinomas using the expression of these genes showed to be very accurate, also when tested in an independent expression data set. Gene-sets associated with ageing (which is related to senescence) and chromosomal instability were upregulated, and a gene-set associated with fatty acid metabolism was downregulated in carcinomas compared to adenomas. Moreover, gene-sets associated with chromosomal location revealed chromosome 4q22 loss and chromosome 20q gain of gene-set expression as being relevant in this progression. CONCLUDING REMARK: These data are consistent with the notion that adenomas and carcinomas are distinct biological entities. Disruption of specific biological processes like senescence (ageing), maintenance of chromosomal instability and altered metabolism, are key factors in the progression from adenoma to carcinoma. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13402-011-0065-1) contains supplementary material, which is available to authorized users
    corecore