3,451 research outputs found

    Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

    Full text link
    Reduction of the peak heat loads on the plasma facing components is essential for the success of the next generation of high fusion power tokamaks such as the International Thermonuclear Experimental Reactor (ITER) 1 . Many present concepts for accomplishing this involve the use of atomic processes to transfer the heat from the plasma to the main chamber and divertor chamber walls and much of the experimental and theoretical physics research in the fusion program is directed toward this issue. The results of these experiments and calculations are the result of a complex interplay of many processes. In order to identify the key features of these experiments and calculations and the relative role of the primary atomic processes, simple quasi-analytic models and the latest atomic physics rate coefficients and cross sections have been used to assess the relative roles of central radiation losses through bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange and hydrogen radiation losses from the scrape-off layer and divertor plasma and impurity radiation losses from the divertor plasma. This anaysis indicates that bremsstrahlung from the plasma center and impurity radiation from the plasma edge and divertor plasma can each play a significant role in reducing the power to the divertor plates, and identifies many of the factors which determine the relative role of each process. For instance, for radiation losses in the divertor to be large enough to radiate the power in the divertor for high power experiments, a neutral fraction of 10-3 to 10-2 and an impurity recycling rate of netrecycle of ~ 10^16 s m^-3 will be required in the divertor.Comment: Preprint for the 1994 APSDPP meeting, uuencoded and gzipped postscript with 22 figures, 40 pages

    Resistively-shunted superconducting quantum point contacts

    Full text link
    We have studied the Josephson dynamics of resistively-shunted ballistic superconducting quantum point contacts at finite temperatures and arbitrary number of conducting modes. Compared to the classical Josephson dynamics of tunnel junctions, dynamics of quantum point contacts exhibits several new features associated with temporal fluctuations of the Josephson potential caused by fluctuations in the occupation of the current-carrying Andreev levels.Comment: 5 pages, RevTex, 3 postscript figures include

    A general approximation of quantum graph vertex couplings by scaled Schroedinger operators on thin branched manifolds

    Full text link
    We demonstrate that any self-adjoint coupling in a quantum graph vertex can be approximated by a family of magnetic Schroedinger operators on a tubular network built over the graph. If such a manifold has a boundary, Neumann conditions are imposed at it. The procedure involves a local change of graph topology in the vicinity of the vertex; the approximation scheme constructed on the graph is subsequently `lifted' to the manifold. For the corresponding operator a norm-resolvent convergence is proved, with the natural identification map, as the tube diameters tend to zero.Comment: 19 pages, one figure; introduction amended and some references added, to appear in CM

    Crohn's disease activity index and Vienna classification - Is it worthwhile to calculate before surgery?

    Get PDF
    Background: Crohn's disease (CD) patients with increased disease activity may reveal an increased risk for perioperative complications. The `Crohn's disease activity index' (CDAI) and the `Vienna classification' (VC) were developed for standardized disease activity estimations. The significance of these scores to predict extent, type and early outcome of surgery in CD patients was analyzed. Methods: In 179 surgically treated CD patients, the CDAI and VC were assessed from a prospective database. Relations of the scores with CD risk factors, type, number, location and complications of surgery were analyzed. Results: VC behavior and location subtypes were associated with distinct types of surgery (i.e. `strictureplasty' in `stricturing disease', `colon surgery' in `colon involvement'), but not with surgery type and extent or outcome. Surgery extent (i.e. with 5 vs. 3 `surgical sites' 425 +/- 25 vs. 223.3 +/- 25) and complications (357.1 +/- 36.9 (with) vs. 244.4 +/- 13 (without)) were associated with elevated CDAI levels; however, nicotine abuse remained the only significant risk factor for perioperative complications after multiple logistic regression. Conclusion: The significance of VC or CDAI for predicting the extent of surgery or complications is limited. None of the tested variables except preoperative nicotine abuse influenced the likelihood for perioperative complications. Copyright (c) 2006 S. Karger AG, Base

    UV laser controlled quantum well intermixing in InAlGaAs/GaAs heterostructures

    Get PDF
    Abstract : The influence of surface irradiation of GaAs with a KrF excimer laser on the magnitude of the quantum well intermixing (QWI) effect has been investigated on GaAs/AlGaAs and GaAs/AlGaAs/InAlGaAs QWs heterostructures. The selective area irradiation through a SiOx mask was carried out in an atmospheric environment. Following the 1000 pulses irradiation at 100 mJ/cm2, the samples were annealed in a rapid thermal annealing furnace at 900 °C. Photoluminescence mapping and cathodoluminescence measurements show that significant laser-induced suppression of the QWI process can be achieved with lateral resolution of the order of 1μm

    Temporal Stream Logic: Synthesis beyond the Bools

    Full text link
    Reactive systems that operate in environments with complex data, such as mobile apps or embedded controllers with many sensors, are difficult to synthesize. Synthesis tools usually fail for such systems because the state space resulting from the discretization of the data is too large. We introduce TSL, a new temporal logic that separates control and data. We provide a CEGAR-based synthesis approach for the construction of implementations that are guaranteed to satisfy a TSL specification for all possible instantiations of the data processing functions. TSL provides an attractive trade-off for synthesis. On the one hand, synthesis from TSL, unlike synthesis from standard temporal logics, is undecidable in general. On the other hand, however, synthesis from TSL is scalable, because it is independent of the complexity of the handled data. Among other benchmarks, we have successfully synthesized a music player Android app and a controller for an autonomous vehicle in the Open Race Car Simulator (TORCS.

    Monotonicity of quantum ground state energies: Bosonic atoms and stars

    Full text link
    The N-dependence of the non-relativistic bosonic ground state energy is studied for quantum N-body systems with either Coulomb or Newton interactions. The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the Newton systems are "bosonic stars". In either case there exists some third order polynomial in N such that the ratio of the ground state energy to the respective polynomial grows monotonically in N. Some applications of these new monotonicity results are discussed
    • …
    corecore