13,569 research outputs found

    Soliton surfaces associated with sigma models; differential and algebraic aspect

    Full text link
    In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the CP^{N-1} sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler-Lagrange equations for sigma models. On the other hand, we show that the Euler-Lagrange equations for surfaces immersed in the Lie algebra su(N), with conformal coordinates, that are extremals of the area functional subject to a fixed polynomial identity are exactly the Euler-Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are treated systematically. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model.Comment: 22 pages, 3 figure

    Maxwell's theory on a post-Riemannian spacetime and the equivalence principle

    Get PDF
    The form of Maxwell's theory is well known in the framework of general relativity, a fact that is related to the applicability of the principle of equivalence to electromagnetic phenomena. We pose the question whether this form changes if torsion and/or nonmetricity fields are allowed for in spacetime. Starting from the conservation laws of electric charge and magnetic flux, we recognize that the Maxwell equations themselves remain the same, but the constitutive law must depend on the metric and, additionally, may depend on quantities related to torsion and/or nonmetricity. We illustrate our results by putting an electric charge on top of a spherically symmetric exact solution of the metric-affine gauge theory of gravity (comprising torsion and nonmetricity). All this is compared to the recent results of Vandyck.Comment: 9 pages, REVTeX, no figures; minor changes, version to be published in Class. Quantum Gra

    Soliton surfaces associated with symmetries of ODEs written in Lax representation

    Full text link
    The main aim of this paper is to discuss recent results on the adaptation of the Fokas-Gel'fand procedure for constructing soliton surfaces in Lie algebras, which was originally derived for PDEs [Grundland, Post 2011], to the case of integrable ODEs admitting Lax representations. We give explicit forms of the \g-valued immersion functions based on conformal symmetries involving the spectral parameter, a gauge transformation of the wave function and generalized symmetries of the linear spectral problem. The procedure is applied to a symmetry reduction of the static ϕ4\phi^4-field equations leading to the Jacobian elliptic equation. As examples, we obtain diverse types of surfaces for different choices of Jacobian elliptic functions for a range of values of parameters.Comment: 14 Pages, 2 figures Conference Proceedings for QST7 Pragu

    Semirelativistic stability of N-boson systems bound by 1/r pair potentials

    Full text link
    We analyze a system of self-gravitating identical bosons by means of a semirelativistic Hamiltonian comprising the relativistic kinetic energies of the involved particles and added (instantaneous) Newtonian gravitational pair potentials. With the help of an improved lower bound to the bottom of the spectrum of this Hamiltonian, we are able to enlarge the known region for relativistic stability for such boson systems against gravitational collapse and to sharpen the predictions for their maximum stable mass.Comment: 11 pages, considerably enlarged introduction and motivation, remainder of the paper unchange

    Planetary micro-rover operations on Mars using a Bayesian framework for inference and control

    Get PDF
    With the recent progress toward the application of commercially-available hardware to small-scale space missions, it is now becoming feasible for groups of small, efficient robots based on low-power embedded hardware to perform simple tasks on other planets in the place of large-scale, heavy and expensive robots. In this paper, we describe design and programming of the Beaver micro-rover developed for Northern Light, a Canadian initiative to send a small lander and rover to Mars to study the Martian surface and subsurface. For a small, hardware-limited rover to handle an uncertain and mostly unknown environment without constant management by human operators, we use a Bayesian network of discrete random variables as an abstraction of expert knowledge about the rover and its environment, and inference operations for control. A framework for efficient construction and inference into a Bayesian network using only the C language and fixed-point mathematics on embedded hardware has been developed for the Beaver to make intelligent decisions with minimal sensor data. We study the performance of the Beaver as it probabilistically maps a simple outdoor environment with sensor models that include uncertainty. Results indicate that the Beaver and other small and simple robotic platforms can make use of a Bayesian network to make intelligent decisions in uncertain planetary environments

    Corrections to Sirlin's Theorem in O(p6)O(p^6) Chiral Perturbation Theory

    Get PDF
    We present the results of the first two-loop calculation of a form factor in full SU(3)×SU(3)SU(3) \times SU(3) Chiral Perturbation Theory. We choose a specific linear combination of π+,K+,K0\pi^+, K^+, K^0 and KπK\pi form factors (the one appearing in Sirlin's theorem) which does not get contributions from order p6p^6 operators with unknown constants. For the charge radii, the correction to the previous one-loop result turns out to be significant, but still there is no agreement with the present data due to large experimental uncertainties in the kaon charge radii.Comment: 6 pages, Latex, 2 LaTeX figure

    Additional restrictions on quasi-exactly solvable systems

    Full text link
    In this paper we discuss constraints on two-dimensional quantum-mechanical systems living in domains with boundaries. The constrains result from the requirement of hermicity of corresponding Hamiltonians. We construct new two-dimensional families of formally exactly solvable systems and applying such constraints show that in real the systems are quasi-exactly solvable at best. Nevertheless in the context of pseudo-Hermitian Hamiltonians some of the constructed families are exactly solvable.Comment: 11 pages, 3 figures, extended version of talk given at the International Workshop on Classical and Quantum Integrable Systems "CQIS-06", Protvino, Russia, January 23-26, 200
    corecore