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Abstract

With the recent progress toward the application of commercially-available
hardware to small-scale space missions, it is now becoming feasible for groups
of small, efficient robots based on low-power embedded hardware to perform
simple tasks on other planets in the place of large-scale, heavy and expensive
robots. In this paper, we describe design and programming of the Beaver
micro-rover developed for Northern Light, a Canadian initiative to send a
small lander and rover to Mars to study the Martian surface and subsur-
face. For a small, hardware-limited rover to handle an uncertain and mostly
unknown environment without constant management by human operators,
we use a Bayesian network of discrete random variables as an abstraction of
expert knowledge about the rover and its environment, and inference opera-
tions for control. A framework for efficient construction and inference into a
Bayesian network using only the C language and fixed-point mathematics on
embedded hardware has been developed for the Beaver to make intelligent
decisions with minimal sensor data. We study the performance of the Beaver
as it probabilistically maps a simple outdoor environment with sensor models
that include uncertainty. Results indicate that the Beaver and other small
and simple robotic platforms can make use of a Bayesian network to make
intelligent decisions in uncertain planetary environments.
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1. Introduction

Intelligent autonomous operation is easily the most difficult problem in
mobile robotics. While known and finite sets of conditions can be planned
for and responses pre-programmed using a variety of methods, giving a robot
the ability to appropriately handle unexpected and uncertain circumstances
remains an open and very challenging problem. Planetary rovers would easily
benefit the most from full autonomy, given that they must operate in uncer-
tain conditions while isolated from any direct human assistance. Certainly
real-time control of a rover on another planet is infeasible, as the delay in
communicating a signal to Mars at the speed of light ranges from 3 to 21
minutes, not even considering temporary communications blackouts and time
for retransmitting due to packet errors. However, due to the complexities in-
volved, autonomy on space hardware has been very slow in adoption because
of the inherent risks of autonomy failures with the extremely high costs of
putting space hardware on other planets. Rovers work in a partially un-
known environment, with narrow energy/time/movement constraints and,
typically, limited computational resources that limit the complexity of on-
line planning and scheduling. This is particularly true of micro-rovers and
other small, inexpensive robots that are desirable to reduce potential losses if
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problems occur with individual units, but require low-power embedded sys-
tems for control that over long periods will need to adapt to unknowns in less
reliable hardware like mechanical wear, system failures, and changes in envi-
ronmental conditions. Considerable research work has been done on efficient
planning algorithms [1] and algorithms to autonomously modify planning to
handle unexpected problems or opportunities [2]. In particular, probabilistic
methods have been used to great effect [3]. Adaptive learning and statistical
control is already available for planetary rover prototypes, and can be signif-
icantly improved to decrease the amount of planning needed from humans
[4], but is still often underutilized.

1.1. Bayesian Reasoning

Bayesian Networks (BN) are well-suited for handling uncertainty in cause-
effect relations, and handle dependence/independence relationships well pro-
vided that the network is constructed using valid relational assumptions.
Gallant et al. [5] show how a simple Bayesian network can operate to
determine the most likely type of rock being sensed given a basic set of
sensor data and some probabilistic knowledge of geology. To make it pos-
sible for the small, efficient planetary rovers of the future be decisionally
self-sufficient, focus is needed on the design and implementation of efficient
but robust embedded decision-making systems for tasks such as navigation
and identification. Some drawbacks of this method are that the variables,
events, and values available must be well-defined from the beginning, and
the causal relationships and conditional probabilities must be available ini-
tially [6]. This makes construction of the Bayesian network a considerable
challenge. Bayesian networks have been used extensively for image recogni-
tion, diagnostic systems, and machine behaviours. However, the potential
of these concepts for distributed machine learning and problem-solving is
considerable, and warrants further real-world research. In the reference [7],
a self-organized control method for a planetary rover has been studied, but
only extends to the navigation problem.

In this work, we apply a probabilistic framework of this type to the prob-
lem of using sensors with a probabilistic model to map obstacles sensed by a
micro-rover prototype. A directional sensor fusion model for simple infrared
range sensors is used to improve the accuracy of object determination, and
Bayesian methods are used to infer the likelihood of object presence at a given
location on the map, which functions as an occupancy grid that is calculated
as a two-dimensional probability distribution. In addition, the uncertainty in
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the measurement made is estimated, mapped in the same way, and used to
drive the search pattern. A set of behaviours is then applied to the likelihood
map to implement obstacle avoidance. To evaluate performance in a real-
world scenario, this system is implemented on a small micro-rover prototype
and tested in an outdoor area with obstacles present. The use of a common
Bayesian framework simplifies operational design and calculation methods
throughout the whole system. Following this Section 1, Section 2 provides
background information on Bayesian networks and inference methods in the
context of discrete reasoning, Section 3 explains our implementation of a
Bayesian network and compares our methodology to the original concept of
Bayesian Robot Programming as described by Lebeltel et al., Section 4 de-
tails the design and methodology of a simple obstacle mapping system using
the Bayesian framework, and Section 5 shows the results of actual testing
using this system. Section 6 then concludes the paper.

1.2. The Beaver µrover

The original application for development of our probabilistic system is
the Northern Light mission, a Canadian initiative to send a lander such as
the one shown in Figure 1 to the surface of Mars for a short-range mission
to observe the surface and position a ground-penetrating radar at a distance
from the lander module for subsurface imaging [8]. For this purpose, it is
planned to include a micro-robot, known as the Beaver rover, which will
leave the lander and perform geological surveying and imaging of the Mar-
tian surface. The primary science payloads for this mission are an Argus
infrared spectrometer for spectral analysis of surface rocks, the same type
as is currently used on the CANX-2 Nanosatellite for atmospheric imaging,
and a ground-penetrating radar system, which is currently under parallel de-
velopment. For this mission, the Beaver will have to traverse a distance of
under a kilometre while avoiding obstacles and taking sensor measurements.
Naturally, extended and reliable operation on the surface of Mars would be
preferred.

The Beaver micro-rover (µrover) prototype currently in use was developed
for this mission as a stand-alone, self-powered, autonomous ground roving
vehicle of 6kg mass designed to gather data and perform simple tasks in dis-
tant or hostile environments such as Mars, the Moon, or here on Earth [9].
The µrover is powered from solar panels and can recharge outdoors while
operating, or by powering down onboard systems for extended periods. A
low-cost, modular design using commercial off-the-shelf (COTS) components
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Figure 1: Northern Light Lander Module (Air Whistle Media/Thoth Technology Inc.)

makes it very flexible and useable for both planetary and terrestrial research
purposes [10]. It has a power-efficient ARM-based onboard computer, a color
CMOS camera, magnetometer, accelerometer, six navigational infrared sen-
sors, and communicates via long-range 900MHz mesh networking. A variety
of communications interfaces including RS-485 serial, SPI, I2C, Ethernet and
USB are used for payload interfacing [11]. A diagram of the onboard sys-
tems available is shown in Figure 2, and the electronics are implemented in
a PC/104+ form factor stack with external payload connectors. Program-
ming is done in the C language using fixed-point numerical processing for
efficiency. The autonomy algorithms are probabilistic in nature, using adap-
tive Kalman filtering [12] and Bayesian networks to handle uncertainty in
the environment with minimal computation requirements. The Beaver uses
probabilistic methods for mission planning, operations, and problem-solving,
where each state variable in the system is considered to be a random variable.

Localization and motion tracking is performed on two scales. For short
distances, high-precision tracking is performed using an HMC5883L mag-
netometer as a compass to obtain heading information, and a downward-
pointing optical sensor to monitor horizontal motion [13]. The optical sensor
is calibrated using reference distances obtained from encoders on the drive
motors [14]. Over longer distances of > 1m, the rover’s position is periodi-
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Figure 2: Beaver Micro-rover Modular Electronic Systems

cally updated with the position obtained from a Trimble Lassen IQ GPS unit
to identify and correct accumulated positional error. A resolution of 0.5m
is used for the occupancy grid as this follows the current level of accuracy
of the GPS position estimation system. Rollover risk and terrain variations
are handled with a nonlinear controller that adjusts the suspension angle by
using differential torques from the four drive motors to raise, lower, and tilt
the suspension as needed. A monocular vision system has also been devel-
oped to augment the mapping of terrain by building feature maps in three
dimensions by triangulation of features detected by the ORB algorithm us-
ing a dedicated DSP board for vision. [15] [16]. As localization methods
are improved, eventually the GPS will not be needed for navigation of the
micro-rover. A picture of the Beaver µrover under testing in a sandy outdoor
environment is shown in Figure 3.

2. Methods

A wide variety of approaches to dealing with probability exist. In general,
the concept of uncertainty is encapsulated in a “random variable”, which is
defined as having a value that is to some degree determined by randomness, in
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Figure 3: Beaver µrover Prototype Testing in Sand

contrast to “definite” variables that have a certain known or unknown value.
In a stochastic system, states are determined by the probability distributions
in random variables, where the values that a random variable takes on have
precise probabilities associated with them, and the sum (or integral) of all
probabilities in a random variable is defined to be 1 to reflect that there must
be some value associated with the random variable that is present. Proba-
bility theory provides a framework for logically handling random variables
and the relationships between them so that useful results can be determined.
Logically connecting many random variables together based on probabilistic
dependencies requires the concept of “evidence”, on which a change in a given
set of probabilities can be based. The interpretation of Bayesian probabil-
ity makes use of propositional logic to enable “hypotheses” to be tested and
updated based on probabilistic data. This process of “Bayesian inference” is
central to our treatment of probabilistic systems. The term “Bayesian” refers
to the 18th century statistical theologian and Presbyterian minister Thomas
Bayes, who formulated the basic theorem of statistical inference based on
conditional probability.

Bayesian networks are similar in concept to fuzzy systems, but have one
major theoretical difference: Fuzzy memberships are constant and imprecise,
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whereas probabilities are precisely defined but may change when an event oc-

curs. Rather than characterize a variable as having partial memberships,
probabilistic or “random” variables can only have one value, but with a cer-
tain probability that varies depending on other factors. These other factors
can be probabilities themselves, leading to the concept of a Bayesian net-
work of conditional probabilities. Probability in this case implies directed
causality a → b → c, and Bayesian networks allow associations to be defined
to determine the likelihood of both a and b if c is known. Using associated
probabilities allows a machine learning system to calculate not only what
specific actions should have a certain effect, but what actions are unlikely to
have that effect, and also what actions may have already had that effect or
not. This ability to characterize multiple causes and “explain away” unlikely
causes makes a Bayesian network a very powerful predictive tool.

2.1. Naive Bayesian Modelling

The most useful contribution of Bayesian networks to real probability
calculations is reducing the storage and computation required. A joint prob-
ability distribution P(X1, . . . , XL) for random variables with N values re-
quires NL−1 separate probability values to store all NL combinations of the
values in all variables with related probability data for each combination. By
exploiting independence between random variables, we can parameterize the
distribution into a set of specific outcomes. For example, if we let Xm be
the result of a coin toss out of M coin tosses with two possible values for xm

being X = xheads and X = xtails, we can define the parameterized probabil-
ity pm as the probability that the m’th coin toss results in heads. Using the
probabilities P(X = xheads) = 0.5 = pm and P(X = xtails) = 1 − 0.5 = 0.5,
we can now represent the distribution using only the M values of pm rather
than all 2M possible combinations of random variable values. The critical
assumption is that each random variable is at least marginally independent

of the other variables, which allows us to write the distribution over M coin
tosses as

P(X = x1, X = x2, . . . , X = xM) (1)

= P(X = x1)P(X = x2) . . .P(X = xM) =

M
∏

m=1

pm.

Parameterization of joint distributions provides an effective way to make
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storage and calculation more tractable. However, obtaining useful probabil-
ity estimations for use in a joint distribution is not trivial. Most commonly,
probability estimates for values of random variables such as X and Y are
obtained through averaging of repeated trial measurements of the stochas-
tic processes they represent. The probability values in a joint distribution
P(X, Y ) can be completely different from those in the separate marginal dis-
tributions P(X) and P(Y ). Given a large enough database of experience,
it may be possible to estimate the joint distribution completely, but there
is little information that can be re-used and every joint distribution would
require a separate dataset. It is much more practical to use the chain rule
for conditional random variables to factor the distribution into a conditional
probability

P(X, Y ) = P(X)P(Y |X). (2)

Of course, this example only considers a single relationship, and proba-
bilistic models of much more complicated systems are needed, with multiple
probability dependencies. For example, a vision system operating in concert
with the obstacle sensor may be able to detect and triangulate features on
nearby objects, and we can use it to increase the accuracy of our estima-
tion of object presence. Let W be the random variable of features being
detected within the range of the obstacle sensor, and let P(W = wf) be
the parameterized probability that enough features are detected to consti-
tute an obstacle. For the moment, we need not consider the complexities of
determining whether the features in question constitute an obstacle, as this
complexity can be effectively “hidden” by the use of the distribution over
W , as we will clarify later. It is natural to think of the information from
these two sensors as being related (and hence the variables W and X), since
they are effectively observing the same set of obstacles. We can write the
conditional joint distribution over these two variables similarly to Equation
2 as

P(W,X, Y ) = P(W,X|Y )P(Y ) (3)

= P(W |Y )P(X|Y )P(Y ).

In this way, we can generalize the factorization of a joint distribution of
M variables X1 . . .XM that are marginally independent but dependent on a
condition Z to
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P(X1, . . . , XM , Z) = P(Z)
M
∏

m=1

P(Xm|Z). (4)

This principle of factorizing parameterized joint distributions is extremely
useful. Besides being able to “split up” a joint distribution into more easily-
obtainable conditional factors, if we assume N values for each random vari-
able we can again reduce the number of actual probabilities required across
M random variables from the order of NM +1 to the order of N ×M +1 by
means of parameterization, as well as correspondingly reducing the amount
of calculation required to a set of multiplications. If P(W |Y ) and P(X|Y ) are
considered to be “likelihoods” and P(Y ) is a “prior”, then only “evidence”
is missing from this expression, indicating that for our example we are only
describing a probability of general object detection and the actual reading
of the sensor is missing. If we divide both sides of Equation 4 by P(X) and
apply the chain rule so that P(W,X, Y )/P(X) = P(W,Y |X), we return to a
conditional expression that has a change of dependency on the left hand side

P(W,Y |X) =
P(W |Y )P(X|Y )P(Y )

P(X)
. (5)

The sensory model we describe here is consequently known as a naive
Bayes model, which is often used for classification of observed features in
sensory systems. For these systems, it is assumed that the conditional vari-
able Y contains a set of “classes” that are responsible for the “features”
represented by variables X1 . . .XM . If we want to compute a measure of
confidence in whether a class y1 or y2 better fit the observed features, we
can compare two distributions directly by taking the ratio of their posterior
probability distributions

P(X1 = x1, . . . , XM = xm, Y = y1)

P(X1 = x1, . . . , XM = xm, Y = y2)
(6)

=
P(Y = y1)

P(Y = y2)

M
∏

m=1

P
(Xm|Y = y1)

(Xm|Y = y2)
.

As we now have methods for building probabilistic relationships and mak-
ing probabilistic inferences, we can make use of this framework to allow a
µrover to make intelligent decisions and respond appropriately to uncertain
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situations. The basis for our approach is inference using a Bayesian network
as an abstraction of expert knowledge regarding the rover itself and assump-
tions about its environment, such as obstacles and hazards. We approach
the problem of probabilistic robotics using the Bayesian Robot Programming
(BRP) methodology developed by Lebeltel, Bessiere et al [17] [18] [19], which
provides a quite comprehensive framework for robotic decision-making using
inference and learning from experience. Despite having considerable promise
and providing a novel solution for reasoning under uncertainty, BRP has not
been developed significantly since the initial publications during 2000-2004.
We add to this method by formally using Bayesian networks as a knowledge
representation structure for programming, and by constructing these net-
works dynamically with implicit information obtained from the µrover bus
and from a store of mission information. There are several advantages to
this approach, which include clarity of representation, a practical structure
for constructing joint distributions dynamically, and reliance on a proven
probabilistic methodology. Also, the use of recursive inference in a Bayesian
network avoids the need to manually partition and decompose large joint
distributions, which greatly simplifies the programming process.

2.2. Bayesian Networks

For us to be able to properly organize and represent a large set of joint
distributions using factorization in this way, we need a method of clearly
associating random variables that are dependent on each other. Using the
naive Bayes model for random variable dependence, a directed graph can be
constructed, with nodes that represent random variables connected by edges
that show the direction of dependence of one random variable on another. A
graph or “network” of probability distributions over random variables, with
one independent random variable representing a node and directed edges
showing its dependencies, is called a Bayesian Network (BN), and forms the
representation of our probabilistic relationships.

A Bayesian Network (BN) can be visualized as a directed acyclic graph
(DAG) which defines a factorization (links) of a joint probability distribu-
tion over several variables (nodes). The probability distribution over discrete
variables is the product of conditional probabilities (“rules”). For a causal
statement X → Y often it is needed to find P(X|Y = y) using the distribu-
tion P(X). Bayes’ rule states that
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P(X|Y = y) =
P(Y = y|X)P(X)

P(Y = y)
. (7)

and a Bayesian network, when viewed from the point of view of a single joint
probability distribution, can be represented by:

P(X1 · · ·Xn) =
n
∏

i=1

P(Xi|Pa(Xi)) (8)

where the parents or depended-on variables) of each i’th node Xi are denoted
by Pa(Xi). To construct a BN, you identify the variables and their causal
relationships and construct a DAG that specifies the dependence and inde-
pendence assumptions about the joint probability distributions. Bayesian
networks can be constructed using semi-automated means if there is infor-
mation regarding the probability and independence of network variables. We
construct the Bayesian network with information about the components of
the rover itself and the mission plan, where causality is implicit as the struc-
ture is broken down into components and sub-components. Applying the
chain rule for conditional probabilities [20], to all nodes in a Bayesian net-
work, the probability distribution over a given network or subnetwork of
nodes ℘ = {X1 . . .XM} can be said to factorize over ℘ according to the de-
pendencies in the network if the distribution can be expressed as a product

P({X1 . . .XM}) =
M
∏

m=1

P(Xm|Pa(Xm)). (9)

The chain rule is particularly useful for calculating the Conditional Prob-
ability Distribution (CPD) of a given node in the network. Due to the depen-
dency structure of the network, the conditional probability of a given node X
depends on all its ancestors, so that P(X|Pa(X)) must be calculated recur-
sively. A query for the posterior probability distribution of X involves first
querying all of its parent nodes Y ∈ Pa(X) to determine their probability
distributions, then multiplying them by the probability distributions of each
parent node Y such that by a simplification of the chain rule

P(X = x) =
∑

Y ∈Pa(X)

P(X = x|Y = y)P(Y = y). (10)

For discrete random variables, which we will be primarily using, it is
important to note that with only one parent of a node, this is effectively just a
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Figure 4: Matrix Calculation for Querying a Random Variable with One Parent

matrix multiplication. This process is graphically illustrated in Figure 4. The
CPD P(X) represents a local probabilistic model within the network, which
for each node represents a local summary of probability for its own random
variables. For a continuous distribution, it can be a function evaluation.
Representing probability distributions by tables, the distribution P(X|Y )
will be an L+1-dimensional matrix for L parents, with the major dimension
of size N for N random variable values in V(X). Each parent Y is assumed to
have a distribution of sizeM (although each could be different with no change
in the concept), so that the distribution P(Y ) is a N × 1 matrix. For nodes
with two or more parents. the process is more complex, as each possible value
of the inferred distribution must be calculated as a sum of the probabilities
that lead to that value, as shown in Figure 5. To calculate the conditional
distribution for X , the size M × N plane of the matrix representing the
values from the parent versus the values from the child node, which is the
distribution P(X|Y ) is multiplied with the N × 1 distribution P(Y ). This
results in anN×1 matrix that is effectively a temporary posterior distribution
estimate for P(X) which avoids frequent recalculation for determining the
conditional distributions of children Ch(X) while traversing the network.

In this way, any node in a Bayesian network can be queried to obtain a
probability distribution over its values. While exact inference as described
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Figure 5: Matrix Calculation for Querying a Random Variable with more than One Parent

into a Bayesian network is widely understood to be an NP-hard problem
[21] [22], it is still much more efficient than the raw computation of a joint
distribution, and provides an intuitive, graphical method of representing de-
pendencies and independences. It is easy to see how any system that can
be described as a set of independent but conditional random variables can
be abstracted into a Bayesian network, and that a wealth of information
regarding the probability distributions therein can be extracted relatively
efficiently. This forms our basic methodology for probabilistic modelling.

P(X1 ∩X2 ∩ . . . ∩XN) (11)

= P(X1)P(X2|X1) . . .P(XN |X1 ∩ . . . ∩Xn−1).

This allows any number of events to be related in terms of other events,
and is a very important result for inference systems. The order or numbering
of the events is not important because the conjunction operator ∩ is commu-
tative, meaning that the chain can be re-formulated to better suit the set of
known priors. For most robotic systems, the desired result is an expression
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for a conditional probability that provides a degree of confidence in a certain
event with respect to other known events.

P(Y |X) =
P(X|Y )P(Y )

P(X)
(12)

=
(likelihood) · (prior)

(evidence)
.

2.3. Probability Queries

Once a probability distribution is defined, it is necessary to have a con-
sistent method of extracting information from it. In most cases, rather than
knowing the entire probability distribution, we only are interested in a specific
probability of a single value or set of values, usually the highest probability.
This is referred to as a Maximum A Posteriori (MAP) query, or alternately,
“Most Probable Explanation” (MPE). This refers to the most likely values
of all variables that are not used as evidence (because evidence is already
known and has certain probability), and is described using argmaxx P(x)
(the value of x for which P(x) is maximal) as

MAP(X|Y = y) = argmax
x

P(x ∩ y). (13)

A very important point to note is that while the MAP query for a single
variable MAP(X|Y = y) is equivalent to just finding the highest probability
of the single-variable distribution P(X), it is not the same as finding all the
maximum values in a joint conditional distribution P(X ∩ Z), because the
underlying probabilities in this joint distribution depend on both values of X
and Z. Rather, a MAP query over a joint distribution finds the most likely
complete set of values (x, z) as each combination of values has a different
probability. This leads to an important generalization of the MAP query,
in which we use a smaller subset of X to find a less likely set of events by
independently searching a joint, conditional distribution of the subset. This
is called a marginal MAP query, and is used frequently in Bayesian inference
engines.

MAP(X|Y = y) = argmax
x

∑

Z

P(X ∩ Z|Y ) (14)
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2.4. Logical Propositions

Inference in Bayesian programming generally relies on the concept of log-
ical propositions. A logical proposition is essentially a formalization of the
state of a probabilistic system, which by our probabilistic framework is repre-
sented by a value assignment for a discrete random variable X = x or several
discrete random variables. Conjunctions (X = x ∩ Y = y) and disjunctions
(X = x∪Y = y) are then also, by extension, propositions. To distinguish the
use of random variable sets from the use of propositions (although logically,
sets and propositions are isomorphic to each other) we will use the proposi-
tional logic operators ∧ for conjunction and ∨ for disjunction, as well as the
shorthand notation for random variables. Hence, propositions will take the
form (x), (x∧y), and (x∨y). We add to this the concept of the negation of a
proposition ¬x, which represents the complement of the value x. For a prob-
ability assignment P(X = x), this represents the complementary probability
1−P(X = x), or informally, the probability of a given event not happening.

As with Bayesian networks, the process of inference is used to extract in-
formation from propositions, based on conditional probability distributions
over a set of random variable dependencies. It is assumed that most propo-
sitions are conditional on the same basic set of prior knowledge (or in graph
parlance, the random variables most queried are child nodes of the same set
of parent nodes). The conjunction of the set of random variables that are
considered “prior knowledge” for a given proposition are often shortened to
the proposition π for brevity, and can be thought of in a Bayesian network as
parents of the node being examined. Based on the rules used for probabilistic
inference, only two basic rules are needed for reasoning [23]: the Conjunc-
tion Rule and the Normalization Rule. We assume that the random variables
used such as X are discrete with a countable number of values, and that a
logical proposition of random variables [X = xi] is mutually exclusive such
that ∀i 6= j,¬(X = xi ∧ X = xj) and exhaustive such that ∃X, (X = xi).
The probability distribution over a conjunction of two such variables using
shorthand notation is then defined as the set P(X, Y ) ≡ P(X = xi∧Y = yi).
Using this concept of propositions, the Conjunction and Normalization Rules
are stated as [17]

∀xi ∈ X, ∀yj ∈ Y : P(xi ∧ yj|π) = P(xi, yj|π) (15)

= P(xi|π)P(yj|xi, π) = P(yj|π)P(xi|yj, π)
and an equivalent disjunction rule can be stated as
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∀xi ∈ X, ∀yj ∈ Y : P(xi ∨ yj|π) (16)

= P(xi|π) + P(yj|π)− P(yj|π)P(xi, yj|π)

while the Normalization Rule becomes

∀yj ∈ Y :
∑

∀xi∈X
P(xi|π) = 1. (17)

The marginalization rule may then be derived for propositions as

∀yj ∈ Y :
∑

∀xi∈X
P(xi, yj|π) = P(yj|π). (18)

For clarity, when applying these rules to distributions over random vari-
ables, we do not necessarily have to state the individual propositions (or
values). As with common random variable notation, the conjunction rule
can be stated without loss of generality as

P(X, Y |π) = P(X|π)P(Y |X, π), (19)

the normalization rule as

∑

X

P(X|π) = 1, (20)

and the marginalization rule as

∑

X

P(X, Y |π) = P(Y |π). (21)

It is assumed that all propositions represented by the random variable
follow these rules.

3. Theory and Implementation

There are many existing software packages for building and using Bayesian
networks, but for µrovers we require a a software framework that is portable,
highly resource-efficient, and usable on embedded systems, as well as be-
ing accessible and open for development. The µrover does not run Java or
Python virtual machines as a rule (although future implementations may
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support Python), and the need for simple integration at a low level with
other robotic components makes the use of a MATLAB embedded target
binary impractical. Due to the constraints involved in running Bayesian in-
ference processes on low-power ARM hardware and the need to adopt other
architectures in the future, the C language was chosen as the lowest common
denominator for compatibility between systems despite the extra complexity
required for implementation in such a low level language. C++ bindings
are also planned for development in order to make interfacing with other
programs easier. The original framework for Bayesian Robot Programming,
known as Open Probabilistic Language (OPL), was originally made available
freely [18] but was later renamed and redistributed as a proprietary package
called ProBT [19]. Several other currently-maintained and open-source pack-
ages were considered for use on the µrover, such as Bayes++, Mocapy++,
and LibDAI, which is a recent but promising system for inference [24]. How-
ever, there is no known general framework that is implemented in bare C for
efficiency and portability as is preferred for µrover software, and is focused
specifically on robotic use in embedded systems, particularly with consider-
ation to fixed-point math. It was therefore determined that a new Bayesian
inference engine for the µrover had to be created.

3.1. Bayesian Robot Programming

A Bayesian program has been defined by Lebeltel et al. as a group of
probability distributions selected so as to allow control of a robot to per-
form tasks related to those distributions [17]. A “Program” is constructed
from a “Question” that is posed to a “Description”. The “Description” in
turn includes both “Data” represented by δ, and “Preliminary Knowledge
represented by π. This “Preliminary Knowledge π consists of the pertinent
random variables, their joint decomposition by the chain rule, and “Forms”
representing the actual form of the distribution over a specific random vari-
able, which can either be parametric forms such as Gaussian distributions
with a given mean and standard deviation, or programs for obtaining the
distribution based on inputs [18]. Rather than unstructured groups of vari-
ables, we apply these concepts to a Bayesian network of M random variables
℘ = X1, X2, . . . , XN ∈ π, δ, from which an arbitrary joint distribution can be
computed using conjunctions. It is assumed that any conditional indepen-
dence of random variables in π and δ (which must exist, though it was not
explicitly mentioned by Lebeltel et al.) is represented appropriately by the
Bayesian network, thus significantly simplifying the process of factorization
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for joint distributions. The general process we use for Bayesian programming,
including changes from the original BRP, is as follows:

1. Define the set of relevant variables. We use the edges between
nodes to represent dependencies. For example, for a collision-avoidance
program, the relevant variables include those from the nodes associated
with the obstacle sensors and vision system, and are generally easy to
identify due to the structure of the network. Usually, a single child
node is queried to include information from all related nodes.

2. Decompose the joint distribution. Rather than partitioning vari-
ables P(X1, . . . , XM |δ, π) into subsets [19], we make use of the prop-
erties of the Bayesian network for implicitly including information in
parent nodes when queried. A question such as a MAP query of any
given node involves knowing the distributions for the parents of that
node, and so on recursively until a node with no parents is reached, by
P(X)

∏M

m=1 P(Xm|δ, π).

3. Define the forms. For actual computations, the joint and dependent
distributions must be numerically defined. The most common function
to be used, and the function used for distributions in this work, is the
Gaussian distribution with parameters mean x̄ and standard deviation
σ that define the shape of the distribution, commonly formulated as

P(X = x) = 1
σ
√
2π
e−

(x−x̄)2

2σ2 .

4. Formulate the question. While queries into a BRP system tradition-
ally involve partitioning random variables into three sets: “searched”
(Se), “known” (Kn), and “unknown” (Un) variables. The use of a
Bayesian network formalizes the relationships of these sets, so that
“searched” nodes can be queried, and implicitly will include all rele-
vant known and unknown information in the network. It is important
to note that a “question” is functionally just another conditional distri-
bution, and therefore operates in the same way as an additional node
in the Bayesian network.

5. Perform Bayesian inference. To perform inference into the joint
distribution, the “Question” that has been formulated as a conjunction
of the three sets Se, Kn, and Un is posed to the system and solved as
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a Bayesian inference. The “Answer” is obtained as a probability dis-
tribution, or in the case of a MAP query, a value from the “searched”
variable. For our Bayesian network implementation, nodes associated
with actions to be taken typically have conditional distributions that
act as “questions” regarding their operational state.

3.2. Bayesian Inference

The last step in Bayesian programming is the actual inference operation
used to determine the probability distribution for the variable or set of vari-
ables in question. Obtaining the joint distribution P(Se|Kn, π) is the goal,
and requires information from all related random variables in {Kn,Un, π},
which in the Bayesian network are visualized as parents of Se. This distribu-
tion can always be obtained using the following inference method [25]. The
marginalization rule from Equation 21 first allows the inclusion of Un, as

P(Se|Kn, δ, π) =
∑

Un

P(Se, Un|Kn, δ, π). (22)

By the conjunction rule from Equation 19, this can be stated as

P(Se|Kn, δ, π) =

∑

Un P(Se, Un,Kn|δ, π)
P(Kn|δ, π) . (23)

Applying the marginalization rule again to sum the denominator over
both Se and Un, we have

P(Se|Kn, δ, π) =

∑

Un P(Se, Un,Kn|δ, π)
∑

{Se,Un}P(Se, Un,Kn|δ, π) . (24)

The denominator of Equation 24 acts as a normalization term, and for
simplicity will be replaced with the constant Σ =

∑

{Se,Un}P(Se, Un,Kn|δ, π),
giving

P(Se|Kn, δ, π) =
1

Σ

∑

Un

P(Se, Un,Kn|δ, π). (25)

To complete the inference calculation, we only need to reduce the distri-
bution

∑

Un P(Se, Un,Kn|δ, π) into factors that can be determined. To do
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this, we must assume that these factors are at least marginally independent.
While BRP originally reduced these factors into marginally independent sub-
sets, we can assume that independence is denoted by the structure of the
Bayesian network, so we only need be concerned with the ancestors of Se.
Using only the ancestors of a given node removes the need to scale by Σ.
Given that inference into a Bayesian network typically involves querying a
single node, we will assume that Se is the singleton Se = {X}. This can
also be accomplished if Se is larger by making X a parent of all nodes in Se.
Applying the chain rule again to Bayesian networks, the probability distri-
bution over Se directly depends on the distributions of its parents, which for
the moment we will assume are known to be unconditional random variables
for clarity. We can factorize the immediate vicinity of Se = {X} as

P(Se|Kn, δ, π) =
∑

Un

∏

Y ∈{X,Pa(X)}
P(X|Y )P(Y ). (26)

This gives us a factorization for a single node. Of course, we cannot
assume that the parents of X have no dependencies, and in general should
be assumed to have some other dependencies Z so that we have P(Y |Z). In
this case we must consider the parent nodes of the node being queried Pa(X),
the parents of the parent nodes Pa(Pa(X)), and so on recursively until we
have spanned the complete set of ancestors Y with Y ∈ An(X). From a
purely algorithmic perspective, we can walk the Bayesian network backwards
through the directed edges from X , determining the conditional distribution
of each node from its parents as we go, and therefore breaking down the
determination of the joint distribution into smaller, separate calculations.
Considering Z to be the parents of each ancestor node Y and following the
method of Equations 9, Equation 10, and Equation 26, a general expression
for the factorization of P(Se|Kn, δ, π) through the Bayesian network is

P(Se|Kn, δ, π) =
∑

Y ∈{X,An(X)





∏

Z∈Pa(Y )

P(Y |Z)P(Z)



 . (27)

This is a recursive calculation, as we must first obtain the conditional
distributions P (Z|Y ) for the ancestors Z furthest from the node X before the
closer ancestors and parents of X (as in depth-first traversal of the branches
of a dependency tree). To save calculations, the temporary estimate P(Y ) =
P(Y |Z)P(Z) is saved for each node Y for use when calculating P(Ch(Y )) for
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the children of Y .
To construct an appropriate machine representation of a Bayesian net-

work, it is necessary to consider both the numerical properties of a Bayesian
node (or random variable), and the underlying requirements of the hardware
and software that support the information contained in the network. As
Bayesian nodes are essentially random variables associated with other ran-
dom variables by way of a joint distribution, an object-oriented approach is
taken to describing them using C structures. Unlike most Bayesian network
implementations, our implementation is unique in that it uses fixed-point
math for storage and calculation and is programmed in C for better porta-
bility and calculation efficiency on small-scale embedded systems.

3.3. Programming the Bayesian Network

The fundamental properties of a Bayesian Node are the probability dis-
tribution of the random variable, and the way that distribution is affected
by the knowledge of other nodes nearby. For numerical compactness and
code efficiency, the values of a node are represented as M × N distribution
matrices, where each row represents the probability distribution of the ran-
dom variable, and each column represents the effects of linked nodes. Total
probability requires that all values in each row m sum to 1. The joint dis-
tribution P of probability values associated with a given random variable is
the content actually stored, as well as a vector of labels for each of the local
values in the random variable itself.

At minimum, a random variable with N possible values will have a 1×N
distribution matrix. A parent node will increase the number of distributions
that must be accounted for in the child node, causing at most M possible
probability distributions for each one of its M possible variable values. If
two or more parent nodes are present, the total number of combinations of
affecting values must be considered in the child node. Hence, a parent with 2
values and a parent with 3 values will together contribute 2× 3 = 6 possible
probability distributions, and if the node itself has 4 possible values, a total
of 4×2×3 = 24 probability values must be stored in total. In general, if each
parent has a distribution Nl values in size, and there are L parents, then the
number of distributions M possible in the child node are

M =
L
∏

l=1

Nl. (28)
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As each child node must have an N ×M matrix, assuming that parent
nodes have similar numbers of values, the storage size of the node scales
roughly as NL. This can be mitigated by designing a deeper graph with
more nodes and less parents per node, as the simplifying properties of the
Bayesian network will decrease the total storage required. A parent node
with an Ml×Nl distribution matrix, regardless of the number of parents and
the size of Ml, will still only contribute Nl values to its child nodes, making
the speed of storage size increase dependent on the size of the probability
distributions in question. A given node X will then have to store a table of
size |V(X ∪ Pa(X))|.

The actual method of storing the distributions is not trivial. Because the
dimensionality of the distribution matrix effectively increases with each par-
ent (adding a new set of combinations of variables), fixed-dimension matrices
are not practical for nodes where new parents may have to be added dynam-
ically. Many languages use nested template classes and other object-oriented
methods for implementing N-dimensional storage. However, for speed and
compactness of storage, we use a single C array for storage of the distri-
bution, and index it with a linear index that is a function of the parent
numbers of the node. To create the index, when addressing an array as an
L + 1-dimensional matrix for L parents we use an extension of the conven-
tional mapping to a linear array index i for a row-major-order matrix, which
for row (m) and column (n) indices is formulated as n + m ∗ columns. By
recognizing that each additional dimension must be indexed by multiplying
past the sizes of all preceding dimensions, we can consistently index into a
linear array at location i using matrix indices m1 for dimension 1 of size M1

(we choose columns here for consistency), m2 for dimension 2 of size M1(we
choose rows here for consistency), and m3, m4, . . . and above for additional
matrix dimensions of size M3,M4, . . . respectively, obtaining

m1 +m2M1 +m3M2M1 + . . .+mL+1

L
∏

l=1

Ml (29)

=
L+1
∑

n=1

(

mn

n−1
∏

l=1

Ml

)

= i.

This O(L) complexity operation must be done for every index into the
array, although shortcuts can be taken when traversing a dimensional axis,
such as incrementing by m1 for traversing rows, m2M1 for columns, etc.
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A set of functions for creating Bayesian networks have been implemented
in C utilizing the fixed-point math system. The functions were specifically
targeted at making the system reliable, efficient and small for use on embed-
ded processors. Nodes of the network are stored as structures indexable in a
static array to ensure that all nodes can be searched easily and no memory
leakage occurs. The linked nodes and probability distribution in each node
are also dynamically allocated. Each time a dynamic element is accessed,
the pointer to it is tested for validity. This lowers the chance of segmenta-
tion faults and corrupted data. Currently, the network is built from both
hardware data and XMLBIF files that contain the network structure and
probability distributions.

In a Bayesian network representation, everything the rover knows is rep-
resented as linked random variables. The knowledge (priors, etc.) is initially
provided by the rover’s self-aware devices. Abstractions that need to be in-
ferred are provided by the mission plan. Using the communications system
detailed above, known values are obtained directly from hardware via the
system bus, with models, capabilities, and links between the nodes provided
by devices themselves. Abstractions such as the definitions of obstacles and
mapped areas of interest are expert knowledge that is typically included in
the mission planning data. Figure 6 shows a simple example of a Bayesian
network constructed in this manner.

3.4. Node Types

While all nodes in the Bayesian network we construct represent random
variables, the variables represent a variety of different real abstractions, and
are consequently constructed using different data sources and roles within
the Bayesian network. All nodes are kept as similar as possible in terms of
data representation and programming interface, and all effectively function
as probability distributions over random variables, although data nodes in
particular usually call external sources to calculate appropriate responses to
queries in real time.

• Ability or (A) nodes provide the abstraction of functions, and include
the sensor models and movement models used to convert physically
measurable quantities into concepts that are suitable for inference and
reasoning such as “high”, “medium”, and “low”. Ability nodes operate
similar to fuzzifier/defuzzifier rules in a fuzzy logic system, but can

25



Figure 6: A General Bayesian Network Illustrating Dependencies and Node Types

also be implemented as probabilistic algebraic functions, such as the
sensor model for the infrared range sensors. They are usually a parent
or child of a bus node. Ability nodes for sensors are typically included
in the set of knowns Kn and ability nodes for actuators are typically
searched in the set Se to make decisions about actuator movement and
operational functions.

• Bus or (B) nodes include hardware devices connected to the system
bus such as the obstacle sensors, inertial sensors, environmental sen-
sors, and actuator drivers. Sensor nodes usually are parent nodes only
that provide actual measurement values to ability nodes, while actuator
nodes are usually child nodes only that are dependent on ability nodes
representing their actual function, and have joint distributions repre-
senting a “question” regarding the actuator state. A bus node acts as
a “terminal” or “endpoint” in the network that allows interaction with
the rover itself and the outside world, and generally is associated with
nodes in Se or Kn.
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• Classification or (C) nodes are used to interpret and translate infor-
mation within the network. For example, an inertial sensor can only
give information about probability of body orientation and an obstacle
sensor about the probability of the presence of an obstacle, but deter-
mining the likelihood of the rover tipping over or the likelihood of a
collision are conditional judgments based on inference. Classification
nodes act as drivers in determining behaviours to respond to external
or internal events, and are most similar to the BRP concept of “Para-
metric Forms”. Classification nodes are also generally included in the
set of unknowns Un.

• Data or (D) nodes act as an interface to additional information outside
the network. These include probability maps built as two or three-
dimensional distributions, and mission information databases used to
build probability distributions dynamically based on external instruc-
tions. Data nodes typically use function pointers to refer queries to
functions that provide the appropriate information based on the sys-
tem state, and are similar to the BRP concept of “Program Forms”.
As they provide data, they are usually included in the set of knowns
Kn.

In Figures 6 and 8, ability nodes are coloured green, bus nodes are
coloured red, classification nodes are colored blue, and data nodes are colored
yellow. Learned probability data is stored and shared in XML format. There
have been several different proposed Bayesian Network Interchange Formats
(BNIF) developed, such as BIF, XMLBIF, and XBN [26]. Despite a lack of
current information and limited scope of adoption, the XBN standard is the
most current, although the earlier XMLBIF format appears more efficient to
parse. Both formats can currently be used for storage, with additional XML
tags implemented to support complete storage of the node structure such as
node type {A,B,C,D}.

4. Experiments

To make use of the probabilistic systems we have described for the basic
task of environmental mapping and navigation, we apply Bayesian proba-
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Figure 7: Beaver µrover Prototype in Outdoor Test Area with Obstacles

bilistic models to the sensor and mapping hardware on the µrover and allow
it to map a small area of outdoor space with known obstacles using only
the infrared range sensors for obstacle detection. The area mapped by the
µrover is shown in Figure 7. It is open except for three boxes, which due to
the low sensitivity of the infrared sensors are covered with white paper for
high reflectivity. In this test, time-averaged GPS is used for coarse position
sensing.

We use simple single-output sensors with a statistical model to monitor
the environment in front of the micro-rover. To avoid necessitating the in-
volvement of human operators, the system for data collection and decision
making has to be implemented on the embedded micro-rover hardware itself.
We make use of a small Bayesian network to perform the obstacle detec-
tion and navigation task. Due to the limitations present on the micro-rover
platform used in this study, all numerical algorithms are being implemented
in fixed-point arithmetic, with the necessary scaling and normalizing ap-
plied. This kind of Bayesian system has not been applied and tested in an
actual planetary micro-rover of this type. As a goal for a simple Bayesian
sensing and control system, we construct an uncertainty map of the rover’s
surroundings that can be used to identify prominent features reliably and
avoid collisions during forward motion. We do not attempt to localize the
rover itself using this information due to the limited information provided by
the range sensors, which would require too much movement during measure-
ments to perform simultaneous localization and mapping. A sensor model for
simple infrared range sensors is used with a directional sensor fusion model
to improve the accuracy of the sensors, and a Bayesian method is used to
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infer the likelihood of object presence at a given location on the map, struc-
tured as a Bayesian network to simplify design and calculation. In addition,
the uncertainty in the measurement made is estimated, mapped, and used
to drive the search methodology. A set of behaviours is then applied to the
likelihood map to implement obstacle avoidance. To evaluate performance in
a real-world scenario, this system is implemented on a small micro-rover pro-
totype and tested in an outdoor area with obstacles present. The Bayesian
network structure used to relate the various aspects of µrover operation for
the mapping task is shown in Figure 8. An early version of this mapping
methodology was tested using a simpler monolithic decision-making algo-
rithm and without using a the Bayesian network [27] and this was used as
a reference for development of the current network of variables, which offers
better probabilistic performance, and more importantly, vastly more flexible
programmability.

4.1. Range Sensor Model

For the purposes of this study, the rover is tasked to observe all objects
encountered and statistically identify obstacles. The µrover’s infrared range
sensors are used to detect objects based on infrared light reflected from their
surfaces, and each provide a range observation measurement r. Each sensor
model is considered to be of a Bernoulli type with a probability of correct
object detection βr, a fourth-order polynomial function of the range sensor
state, modelled as a random variable R, where [28]

R = ||x− x̄|| ∈ R
+ (30)

with x̄ being the rover’s estimated current location and x being the location
of a sensed object. We can quantify the the probability βr that the range
sensor state R is correct by defining it as

βr =

{

βb +
1−βb

rmax
4 (rmax

2 − R2)2, if R ≤ rmax

βb, if R > rmax

(31)

where βb is the base likelihood of correct object detection, assumed to be
βb = 0.5 so that an even likelihood of correctness is assumed if the object
is outside the sensor’s range since no actual information of object presence
will be provided to the sensor. rmax is the sensor’s maximum range of ap-
proximately 2m, beyond which correct and incorrect object detection are
equally likely. The peak value of βr if the object being observed is located
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Figure 8: The Bayesian Network Used in the µrover for Mapping with IR Sensors
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at x̄ is 1 (certainty) and occurs closest to the sensor, which generally has
higher accuracy when closer to an object. This provides a model by which
the assumption of object presence at R can be made based on the actual
measurement of r.

A probabilistic method is used to update the probability of object pres-
ence given a range observation r. We define the likelihood of an object being
present at range R from the current location and time t+ 1 given the range
observations r as P(R|r, t + 1) and taking into account the reliability of the
sensor. Although we have no other reference for object detection besides the
range sensors, we can increase accuracy by including any knowledge we have
already regarding object presence at a given map location x with the variable
o = {0, 1} with 1 defining an object being present and 0 defining an object
not being present. This can be written in the form P(R|r, o, t+1), which can
be solved for by applying Bayes’ rule as [29]

P(R|r, o, t+ 1) =
P(r|R, t)P(R, t)

P(r, t)
(32)

=

{

βrP(R,t)
2βrP(R,t)−βr−P(R,t)+1

, if o = 1
(1−βr)P(R,t)

−2βrP(R,t)+βr+P(R,t)
, if o = 0

where we use the law of total probability and the fact that P(r|R, t) is given
by βr. Equation 32 represents the “Sensor Model” nodes in the Bayesian
network of Figure 8. This probability distribution is shown for the case
where the probability of object detection by itself is constant as P(R, t) =
P(R) = 0.2 in Figure 9. Of note is the fact that regardless of object detection
o, the distribution converges to P(R, t) at r = rmax. To determine whether
an object has been contacted, we need to make sure the output of the range
sensor is above the noise level of the device, for which we make sure at least
two samples in a row indicate that contact well above the RMS error σr is
made.

o =

{

1, if rraw(t) > 2σr ∧ rraw(t− 1) > 2σr

0, otherwise
(33)

4.2. Range Sensor Fusion

Three directional infrared sensors are placed on the front of the rover for
use in obstacle detection, with the side sensors angled 30◦ out from the central
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Figure 9: Probability Distributions P(R|r, d, t+ 1) for Infrared Range Sensor Model

sensor. To improve the detection reliability of objects in the probability map,
the sensor data is combined using a linear opinion pool. Each sensor set at
an angle θr is assumed to have a sensor angle of view wr and a Gaussian
horizontal detection likelihood, so the detection probability incorporating
angular deviation for each sensor is estimated as

αs =
1

w2
r

√
2π

∗ e−( θr
wr

)2 . (34)

To combine probability information in the Bayesian network, we can cre-
ate a node that depends on other nodes above it in the structure. To combine
the information from the three sensors together, we use the “Sensor Fusion”
node, which provides an opinion pool forN sensors at angles of θn, n = 1 . . .N
with respect to a primary direction by

P(R|r, o, t, θ1, θ2, · · · θN ) (35)

=

N
∑

n=1

P(R|r, o, t) ∗ 1

w2
r

√
2π

∗ e−( θn
wr

)2 .

4.3. Map Updates

Mapping of object probabilities is done at each point x within the sensor
range rmax of x̄ at the angle θr. The rover’s map is structured as an occu-
pancy grid spanning the area in question, and functioning as a probability
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distribution over obstacle presence O. Initially, every grid element in the
map is initialized to P(R), the estimated probability of encountering an ob-
stacle in this environment, and the map is updated at the locations pointed
to by the sensors. We consider map updates to be a Bayesian parameter es-
timation problem using a joint probabilistic model to obtain the probability
P(O|R,x, t) of an obstacle being present at x. We use the estimate of the
probability of a range measurement given an obstacle at x, the probability of
an obstacle P(O,x, t), and the prior for any obstacle detection with Bayes’
rule to form

P(O|R,x, t+ 1) =
P(R|O,x, t)P(O,x, t)

P(R,x, t)
. (36)

A two-dimensional Gaussian function can be used to estimate P(O|R,x, t+
1) on the map to capture the uncertainty in positional measurement. While
the main goal is statistical identification of obstacles, it is also important
to know how much certainty is present at each point in the map. The un-
certainty in a measurement can be modelled as the informational entropy
present [30]. The information entropy at x and time t for a Bernoulli distri-
bution Ps={Ps, 1− Ps} are calculated as

H(O|R,x, t+ 1) (37)

= min
t
(−P(R,x, t) ln(P(R,x, t))

−(1− P(R,x, t)) ln(1− P(R,x, t))).

The minimum of all measurements over t taken at a mapped point x

is used to reinforce that uncertainty decreases over time as more data is
gathered. The use of a probabilistic sensor model allows the rover’s view of
the world to be fuzzy, so that rather than assuming a precise location for
obstacles and landmarks, the rover can choose the path that is least likely to
contain obstacles, and also consider the locations on the map that contain
the least information to be the least reliable. This makes the system more
robust to position errors and sensor inaccuracies, as it will attempt to choose
the best solution while considering the presence of statistical errors such as
Gaussian noise.

The rover maintains two maps of its operating area, one for detected
object probability P(O|R, r,x) and one for accumulated entropy H(O|R, r,x),
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which are constant over t unless sensory data is added at any point x. As
the rover is currently only intended to travel several meters to carry out
a mission goal, this is sufficient for short-range travel. The “Probability
Map” node provides an interface from the occupancy grid to the Bayesian
network by representing the map as a two-dimensional discrete probability
distribution. As a probability distribution, the map can be part of a query to
obtain the probability of obstacles at a specific location, or updated as part
of a learning process with the original map serving as the prior distribution.
The main difference in considering the map a probability distribution is that
each row or column must be normalized to the size of the map for queries to
be accurately carried out.

4.4. Mapping Methodology

Assuming the rover is present at the centroid of a grid element x̄ then a
sensor reading at range r will affect positions P(xx+ r cos(θr),xy + r sin(θr))
and any adjacent locations within the distribution spread of the sensor. En-
tropy is mapped in much the same way, as H(xx+r cos(θr),xy+r sin(θr)) for
orthogonal Cartesian components xx and xy for each θr. Before any data is
gathered, the probability map is initialized to P(R), while the entropy map
is normally initialized to 1 at every point. As the search process within the
map is not generally randomized, this leads to the same pattern being re-
peated initially. To evaluate the impact of varying initial uncertainty on the
search pattern, the entropy map was also initialized using a pseudo-random
value δh < 1 as 1 − δh < H(x) < 1 in a separate set of tests. For efficiency,
the rover is assumed to only evaluate a local area of radius dmax in its stored
map at any given time t. Mapping continues until there are no remaining
points with uncertainty exceeding a given threshold, (∀x,H(x) < Hdesired).

Considering the set ∆s as all points within this radius, where {∀x ∈
∆s, ||x − x̄|| < dmax}, the target location x̂ is generally chosen to be the
point with maximum uncertainty:

x̂′ = argmax
∆s

(H(O|R, r,x)). (38)

However, as this typically results in mapping behaviour that follows the
numerical map search algorithm, it is desirable to provide a more optimal
search metric. We choose the map location with maximum uncertainty within
the margin δh and minimum distance from the rover and use a logical OR
with Equation 38 in the algorithm as
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x̂ = x̂′ ∨ [argmax
∆s

(H(O|R, r,x)− δh) ∧ argmin
∆s

||x− x̄||]. (39)

To make the target destination available as a probability distribution, we
use a maximum likelihood estimation process to create a Gaussian distribu-
tion over a target location random variable T with the mean at the horizontal
angle θt aiming toward x̂ and with a standard deviation of π radians so that
at least a 180◦ arc has probability of reaching the target.

P(T |R,d, θt) =
1

π
2

√
2π

e
− (x−θ)2

π2/4 (40)

The node “Navigation Goal” in Figure 8 encapsulates this so that queries
can be performed. The spread of the Gaussian distribution allows a wide
variety of choices for steering angle even if obstacles are present between the
rover and the target.

4.5. Navigational Decisions

For forward navigation, we would like to travel to the target location by
the shortest route possible while minimizing the risk of a collision. From
a naive Bayes standpoint, what we need is a probability distribution that
includes both the probability of collision across the possible steering angles
of the rover, and the distance to potential obstacles so that closer obstacles
count as more dangerous than distant ones. This can accomplished by first
obtaining the vector d = x̂′ − x̄ from the rover to the target point, and
considering the area of the map occupying the solid angle θd from this vector
centred on the rover, such that the angles θ ∈ [−θd . . . θd] with respect to
d are considered. A set of M discrete angles θm, m = 1 . . .M can then
be evaluated by summing the normalized total probability of encountering
an obstacle over all locations along the length dmax vector xθ to form the
probability distribution

P(O|R,d, θm) =

∑

xθ
P(O|R,xθ)

dmax

. (41)

This provides a metric for the likelihood of encountering an obstacle in
the direction θ and allows existing map data to help plan routes. To incor-
porate the concept of distance, the sum of the distribution is weighted by the
distance |xθ − x̄|, effectively increasing the likelihood of encountering closer
obstacles.
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P(O|R,d, θm) =

∑

xθ
(dmax − |xθ − x̄|)P(O|R, r,xθ)

dmax

(42)

The probability distribution P(O|R, r, d, θm) is implemented in the “Col-
lision Avoidance” node in Figure 8, and is used together with the target
location to drive the “Movement Model” node, which calculates a distribu-
tion P(M |O,R, r,d) over a random variable of movement direction M to
prioritize the target point, but avoid areas with high obstacle likelihood.

P(M |O,R,d) = P(T |R,d, θt) + (1− P(O|R,d, θm)) (43)

The query argmax
M

P(M |O,R, r,d) is then used to determine the best

choice of direction for forward movement.

5. Results and Discussion

The Beaver was given a 20m by 20m area for motion, and mapping was
constrained to this area in software, although the rover could physically leave
the map due to turning radius constraints. Using the Bayesian mapping
strategy with the goal of exploring all the given map area thoroughly, the
rover was allowed to move freely in an area with no obstacles. For this test,
βb = 0.2, dmax = 8m, P(R) = 0.2, and a grid with 0.5m resolution were
used. The grid resolution reflects not only the noise and uncertainty in GPS
measurements, but also the safety margin around obstacles that is desired to
avoid collisions.

5.1. Range Sensor Characterization

To evaluate the performance of the µrover infrared range sensors used for
navigation, the µrover was placed at 2m from one of the mapping obstacles
and driven forward while taking positional measurements. By driving the
infrared emitter with its maximum design voltage of 7V , a maximum range
of rmax = 2m is possible, which is assumed by the sensor model. Additionally,
to ensure that the range sensor would function at oblique angles to a target,
a mapping obstacle was placed at 1m distance and the normal of the facing
surface rotated through ϑo = (45◦ . . .− 45◦) with respect to the line of sight
of the sensor. Profiles of digital range rraw versus actual range and digital
range with respect to the facing surface angle of the target ϑo are plotted in
Figure 10.
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Figure 10: Infrared Range Sensor Profiles for Distance (a) and Angle (b)

An 8-bit ADC is used for measurement of the range sensor, and the
sensor output noise level remains within ±1 8-bit unit throughout most of
the test. Fitting the profile of rraw to a first-order rational function yields
the polynomial fit rraw ≈ (−7.933r+56.61)/(r+0.07544), which is solved for
r to obtain the transfer function r = −(0.08(943rraw−707625))/(1000rraw+
7933) used to calculate the actual range from the given measurements. The
combination of sensor, ADC, and polynomial fit noise results in an RMS
error of σr = 2.777 8-bit units (1.33%) in rraw, which is more than acceptable
for the main driver of uncertainty in the map, our rover positioning error.
Variation with target surface angle of rraw(ϑo) is also very low, showing no
appreciable dependence on ϑo and only slightly higher noise than with no
rotation. As there is no fitting estimation, an RMS error of 1.015 is observed
for this case. In practice, infrared range sensors such as these are limited
in capability by ambient sunlight. Strong direct sunlight can overwhelm the
intensity of the infrared beam generated from the sensor and make it almost
impossible for the sensor to distinguish the location of the reflected beam
on nearby objects. For this reason, the current models of infrared sensor
are considered to be low-cost development and testing alternatives to more
robust range sensors such as laser rangefinders or LIDAR systems that would
be used on actual flight hardware.
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Figure 11: Probability and Uncertainty Maps Found by µrover, No Obstacles

5.2. Autonomous Mapping Without Obstacles

First, each location in the probability map was initialized to 0 and each
in the entropy map was initialized to 1. Figure 11 shows the probability and
uncertainty maps. The path that the rover took during the test is shown
as an overlaid black line. The initial entropy map was then modified with
a pseudo-random offset as suggested above with δh = 0.1. Figure 12 shows
the probability and uncertainty maps. The new path that the rover chose is
shown.

5.3. Autonomous Mapping With Obstacles

Three obstacles were then placed in the 20m by 20m area to test the obsta-
cle avoidance methodology. Two 1mx1m obstacles were placed at (14m, 16m)
and (7m, 10m), and a 0.5mx1m obstacle was placed at (12.5m, 3m) in grid
coordinates. The layout of the testing area used is shown in Figure 7. The
rover was run with the same parameters as the tests above with the un-
certainty map initialized to 0 and the entropy map initialized to 1. The
resulting path and maps are shown in Figure 13. The test was repeated with
the pseudo-random offset as suggested above with δh = 0.1, and the results
are shown in Figure 14.

The obstacles are not overly obvious given the statistical nature of the
mapping, but they are visible as points of high probability and low uncer-
tainty, while the remainder of the mapped area retains an uncertainty of close
to 0.1 on average. The peaks in obstacle probability vary between runs due
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Figure 12: µrover Probability and Initially-Randomized Uncertainty Maps Found by
µrover, No Obstacles

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20  
Probability Map

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) P(O|R, r,x)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20  
Uncertainty Map

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) H(O|R, r,x)

Figure 13: Probability and Uncertainty Maps Found by µrover, With Obstacles
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Figure 14: Probability and Initially-Randomized Uncertainty Maps Found by µrover, With
Obstacles

to small differences in location x or sensor reading r that occur due to real-
world uncertainties. However, even though the probability map varies with
each run, the results obtained regarding object presence are very consistent,
as statistical methods are generally robust to uncertainties. Because mapped
probability depends on previous map measurements as well as current ones,
if the micro-rover moves too fast, the reliability of the measurements will
decrease as well. It can be noted that obstacles that lie directly in the path
of the rover have better characterization in terms of high probability, because
if the uncertainty driver does not force the rover to get close to obstacles, the
sensor model will not place as high a reliability on the resulting probability.

The path was fairly consistent between test runs, with the exception of
occasional sensor errors that momentarily cause the rover to begin obstacle
avoidance behaviours, and show up as small course deviations or loops in
the path. The pseudo-random offset caused the rover to prefer a Cartesian
side-to-side movement indicating that the greatest uncertainty search in Eq.
36 was dominant, while a flat uncertainty initialization caused a shorter and
less regular pattern indicating that the closest point search in Eq. 37 was
dominant. The same random seed was used on all tests, so observing the same
motion pattern in both cases is expected. This also causes a more thorough
traversal of the map, resulting in better obstacle characterization. In both
cases, it is evident that the obstacles are detected as peaks in the probability
map and successfully avoided, although due to the high granularity of the
mapping, the obstacle location accuracy is quite coarse. No comparison was
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done in this study between different test areas and obstacle layouts, and it
is possible that a less predictable path could be desired. In this case, greater
randomization in the algorithm would likely suffice.

6. Conclusions

Improving the reasoning capability on modern robots is an important
part of making small planetary rovers more independent of humans. One of
the greatest challenges for small planetary rovers is being able to make in-
telligent, appropriate decisions in environments that are inherently unknown
and uncertain. Probabilistic methods are a good solution to this problem,
providing a way to interpret large interrelated numbers of variables logically
and choose more likely options while explaining away others. For this reason,
we base the autonomy and machine intelligence of the µrover on Bayesian
networks that are constructed from both prior knowledge and known rela-
tionships between hardware components and abstract concepts. A compre-
hensive description of how statistical and probabilistic methods are applied
to the µrover has been given, with particular emphasis on the practicality
of probability distributions with random variables as a way of representing
abstracted data and making queries in a robotic system. Making decisions
using logical propositions is described within the context of the Bayesian
Robot Programming paradigm. Applying this paradigm specifically to the
Bayesian network structure has lead to an efficient and intuitive way of rep-
resenting robotic knowledge and drawing conclusions based on relationship
information encapsulated in the network.

The novel, efficient, structured framework we have implemented for prac-
tical use of Bayesian networks and probabilistic queries can be applied to a
wide range of robotic applications. By replacing definite variables with ran-
dom variables and building networks of the four different kinds of nodes with
either discrete or continuous probability distributions, any set of information
can be obtained with relevance dependent on the accuracy of the distribu-
tions represented. The programming is efficient enough that queries can
be made at high speed even on the embedded µrover hardware. Using this
framework, we have shown the feasibility of using Bayesian methods for intel-
ligent control on embedded micro-rover hardware for processing and mapping
statistical data from a basic set of sensors. Results indicate that statistical
methods can be used effectively with a simple sensor set and embedded hard-
ware to provide systematic mapping and obstacle avoidance algorithms for
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outdoor navigation. This method can be extended to much more complex
systems simply by adding sensors and their appropriate networked random
variables.

It is expected that the Bayesian programming system will contribute to
the success of the Northern Light mission by increasing the number of vari-
ables with associated uncertainty that can be considered when making de-
cisions, and correspondingly decreasing the amount of manual planning and
interaction between the rover and ground station. To justify the use of au-
tonomy methods such as this on other planets, extensive development and
testing of robust methods is required, and the cost savings in required person-
nel for operation will have to become significant with respect to the mission
cost. It is expected that the importance of including statistical characteri-
zations and uncertainty in planetary robotic systems such as the µrover will
only increase as technology develops and more missions are fielded. Devel-
opment of intelligent and robust autonomous systems should remain a high
priority for future missions.
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