82 research outputs found

    Tracing baculovirus AcMNPV infection using a real time method based on ANCHORTM DNA labeling technology

    Get PDF
    Many steps in the baculovirus life cycle, from initial ingestion to the subsequent infection of all larval cells, remain largely unknown; primarily because it has hitherto not been possible to follow individual genomes and their lineages. Use of ANCHORTM technology allows a high intensity fluorescent labelling of DNA. When applied to a virus genome, it is possible to follow individual particles, and the overall course of infection. This technology has been adapted to enable labelling of the baculovirus Autographa californica Multiple NucleoPolyhedroVirus genome, as a first step to its application to other baculoviruses. AcMNPV was modified by inserting the two components of ANCHORTM: a specific DNA-binding protein fused to a fluorescent reporter, and the corresponding DNA recognition sequence. The resulting modified virus was stable, infectious, and replicated correctly in Spodoptera frugiperda 9 (Sf9) cells and in vivo. Both budded viruses and occlusion bodies were clearly distinguishable, and infecting cells or larvae allowed the infection process to be monitored in living cells or tissues. The level of fluorescence in the culture medium of infected cells in vitro showed a good correlation with the number of infectious budded viruses. A cassette that can be used in other baculoviruses has been designed. Altogether our results introduce for the first time the generation of autofluorescent baculovirus and their application to follow infection dynamics directly in living cells or tissues

    In cultured cells the baculovirus P10 protein forms two independent intracellular structures that play separate roles in occlusion body maturation and their release by nuclear disintegration

    Get PDF
    P10 is a small, abundant baculovirus protein that accumulates to high levels in the very late stages of the infection cycle. It is associated with a number of intracellular structures and implicated in diverse processes from occlusion body maturation to nuclear stability and lysis. However, studies have also shown that it is non-essential for virus replication, at least in cell culture. Here, we describe the use of serial block-face scanning electron microscopy to achieve high-resolution 3D characterisation of P10 structures within Trichoplusia ni TN-368 cells infected with Autographa californica multiple nucleopolyhedrovirus. This has enabled unparalleled visualisation of P10 and determined the independent formation of dynamic perinuclear and nuclear vermiform fibrous structures. Our 3D data confirm the sequence of ultrastructural changes that create a perinuclear cage from thin angular fibrils within the cytoplasm. Over the course of infection in cultured cells, the cage remodels to form a large polarised P10 mass and we suggest that these changes are critical for nuclear lysis to release occlusion bodies. In contrast, nuclear P10 forms a discrete vermiform structure that was observed in close spatial association with both electron dense spacers and occlusion bodies; supporting a previously suggested role for P10 and electron dense spacers in the maturation of occlusion bodies. We also demonstrate that P10 hyper-expression is critical for function. Decreasing levels of p10 expression, achieved by manipulation of promoter length, correlated with reduced P10 production, a lack of formation of P10 structures and a concomitant decrease in nuclear lysis

    Identification and Preliminary Characterization of a Chitinase Gene in the Autographa californica Nuclear Polyhedrosis Virus Genome

    Get PDF
    AbstractA functional chitinase gene (chiA) has been identified in the genome of the Autographa californica nuclear polyhedrosis virus (AcMNPV). It is expressed in the late phase of virus replication in insect cells. High levels of both endo- and exochitinase activity were detected by 12 hr p.i. and remained stable throughout infection. An AcMNPV chiA protein-specific antibody was prepared using recombinant material prepared in bacteria. This was used to demonstrate that a product of approximately 58 kDa was synthesised in virus-infected cells. Immunofluorescence analysis of virus-infected cells showed that most chitinase was located in the cytoplasm. Primer extension analysis of mRNA from AcMNPV-infected cells confirmed that transcription initiated from a baculovirus late start site (TAAG), 14 nucleotides upstream from the putative translation initiation codon. The predicted protein sequence of the AcMNPV chiA shares extensive sequence similarity with chitinases from bacteria and, in particular, the Serratia marcescens chitinase A (60.5% identical residues). Phylogenetic analyses indicate that AcMNPV, or an ancestral baculovirus, acquired the chitinase gene from a bacterium via horizontal gene transfer

    Improved baculovirus vectors for transduction and gene expression in human pancreatic islet cells

    Get PDF
    Pancreatic islet transplantation is a promising treatment for type 1 diabetes mellitus offering improved glycaemic control by restoring insulin production. Improved human pancreatic islet isolation has led to higher islet transplantation success. However, as many as 50% of islets are lost after transplantation due to immune responses and cellular injury. Gene therapy presents a novel strategy to protect pancreatic islets for improved survival post-transplantation. To date, most of the vectors used in clinical trials and gene therapy studies have been derived from mammalian viruses such as adeno-associated or retrovirus. However, baculovirus BacMam vectors provide an attractive and safe alternative. Here a novel BacMam was constructed containing a frameshift mutation within fp25, which results in virus stocks with higher infectious titres. This improved in vitro transduction when compared to control BacMams. Additionally, incorporating a truncated vesicular stomatitis virus G protein increased transduction efficacy and production of EGFP and BCL2 in human kidney (HK-2) and pancreatic islet β cells (EndoC βH3). Lastly, we have shown that our optimized BacMam vector can deliver and express egfp in intact pancreatic islet cells from human cadaveric donors. These results confirm that BacMam vectors are a viable choice for providing delivery of transgenes to pancreatic islet cells

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16, 1996 Binyanei haOoma, Jerusalem Iarael part 3(final part)

    Get PDF

    Correction

    Get PDF

    Functional analysis of the p10 gene 5′ leader sequence of the Autographa californica

    No full text
    corecore