1,214 research outputs found

    Neutron EDM from Electric and Chromoelectric Dipole Moments of Quarks

    Full text link
    Using QCD sum rules, we calculate the electric dipole moment of the neutron d_n induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks \tilde d_i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments d_i. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and d_n =(1\pm 0.5)[1.1e(\tilde d_d + 0.5\tilde d_u)+1.4(d_d-0.25d_u)].Comment: 4 pages, revtex, v2: missing overall factor of two reinstate

    Lorentz Violating Supersymmetric Quantum Electrodynamics

    Full text link
    Theory of Supersymmetric Quantum Electrodynamics is extended by interactions with external vector and tensor backgrounds, that are assumed to be generated by some Lorentz-violating (LV) dynamics at an ultraviolet scale perhaps related to the Planck scale. Exact supersymmetry requires that such interactions correspond to LV operators of dimension five or higher, providing a solution to the naturalness problem in the LV sector. We classify all dimension five and six LV operators, analyze their properties at the quantum level and describe observational consequences of LV in this theory. We show that LV operators do not induce destabilizing D-terms, gauge anomaly and the Chern-Simons term for photons. We calculate the renormalization group evolution of dimension five LV operators and their mixing with dimension three LV operators, controlled by the scale of the soft-breaking masses. Dimension five LV operators are constrained by the low-energy precision measurements at 10^{-10}-10^{-5} level in units of the inverse Planck scale, while the Planck-scale suppressed dimension six LV operators are allowed by observational data.Comment: 37 pages LaTeX, minor revisions, and typos correcte

    PAMELA Positron Excess as a Signal from the Hidden Sector

    Full text link
    The recent positron excess observed in the PAMELA satellite experiment strengthens previous experimental findings. We give here an analysis of this excess in the framework of the Stueckelberg extension of the standard model which includes an extra U(1)XU(1)_X gauge field and matter in the hidden sector. Such matter can produce the right amount of dark matter consistent with the WMAP constraints. Assuming the hidden sector matter to be Dirac fermions it is shown that their annihilation can produce the positron excess with the right positron energy dependence seen in the HEAT, AMS and the PAMELA experiments. Further test of the proposed model can come at the Large Hadron Collider. The predictions of the pˉ/p\bar p/p flux ratio also fit the data.Comment: 9 pages,3 figures; Breit-Wigner enhancement emphasized; published in PR

    Probing CP Violation with the Deuteron Electric Dipole Moment

    Full text link
    We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.Comment: 5 pages, 4 figures; precision estimates clarified, to appear in Phys. Rev.

    How do you know if you ran through a wall?

    Full text link
    Stable topological defects of light (pseudo)scalar fields can contribute to the Universe's dark energy and dark matter. Currently the combination of gravitational and cosmological constraints provides the best limits on such a possibility. We take an example of domain walls generated by an axion-like field with a coupling to the spins of standard-model particles, and show that if the galactic environment contains a network of such walls, terrestrial experiments aimed at detection of wall-crossing events are realistic. In particular, a geographically separated but time-synchronized network of sensitive atomic magnetometers can detect a wall crossing and probe a range of model parameters currently unconstrained by astrophysical observations and gravitational experiments.Comment: 5 pages, 2 figure; to appear in the PR

    Solar Gamma Rays Powered by Secluded Dark Matter

    Full text link
    Secluded dark matter models, in which WIMPs annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the solar system, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.Comment: 22 pages, 3 figure

    CP-odd static electromagnetic properties of the W gauge boson and the t quark via the anomalous tbW coupling

    Full text link
    In the framework of the electroweak chiral Lagrangian, the one-loop induced effects of the anomalous tbWtbW coupling, which includes both left- and right-handed complex components, on the static electromagnetic properties of the WW boson and the tt quark are studied. The attention is focused mainly on the CP-violating electromagnetic properties. It is found that the tbWtbW anomalous coupling can induce both CP-violating moments of the WW boson, namely, its electric dipole (μ~W\tilde{\mu}_W) and magnetic quadrupole (Q~W\tilde{Q}_W) moments. As far as the tt quark is concerned, a potentially large electric dipole moment (dt)(d_t) can arise due to the anomalous tbWtbW coupling. The most recent bounds on the left- and right-handed parameters from BB meson physics lead to the following estimates μ~W 10231022\tilde{\mu}_W ~ 10^{-23}-10^{-22} e-cm and Q~W 10381037\tilde{Q}_W~ 10^{-38}-10^{-37} e-cm2^2, which are 7 and 14 orders of magnitude larger than the standard model (SM) predictions, whereas dtd_t may be as large as 102210^{-22} e-cm, which is about 8 orders of magnitude larger than its SM counterpart.Comment: This paper has been merged with hep-ph/0612171 for publication in Physical Review

    Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents

    Full text link
    New neutrino states \nu_b, sterile under the Standard Model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the Standard Model weak interactions. If some fraction of solar neutrinos oscillate into \nu_b on their way to Earth, the coherently enhanced elastic \nu_b-nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic \nu_b-nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar neutrino energies the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the \nu_b-induced deuteron breakup, and the excitation of 4.4 MeV \gamma-line in ^{12}C. Stronger-than-weak force coupled to baryonic current implies the existence of new abelian gauge group U(1)_B with a relatively light gauge boson.Comment: 20 pages, 5 figures. References added, inconsistent treatment of neutrino oscillations corrected, conclusions unchange
    corecore