2 research outputs found

    Деякі аспекти еконебезпеки внаслідок видобування урану

    Get PDF
    1. Bakarzhiev, A.H., Lysenko, O.A., 2018. Istoriya stvorenny syrovynnoi bazy Ukrainy [Hystory of raw mate- rial base formation in Ukraine]. Mineralni resursy Ukrainy, 1, 4-14. (in Ukrainian) 2. Belevtsev, Ya.M., Koval, V. B. et al., 1995. Geneticheskie tipy i zakonomernosti razmeshcheniya uranovykh mestorozdenii Ukrainy [Genetic types and regula- rities in placement of uranium deposits in Ukraine] Kyiv: Naukova Dumka. – 396 p. (in Russian) 3. Deventer, E., 2019. Natural radioactivity: A public health perspective. WHO. NORM IX, 9-th International Symposium of NORM. Retrieved from URL: https://nucleus.iaea.org/sites/orpnet/home/ Shared%20Documents/OS-van%20Deventer-Natural-Radioactivity-WHO.pdf 4. Dudar, T.V., Buhera, M.A., Lysychenko, G.V., 2014. Uranovi rudy yak dzerelo potentsiinoi nebezpeky v razi nesanktsionovannogo obigu radioactyvnykh materialiv [Uranium ores as a source of potential hazard in case of unauthorized tracking of radioactive material]. Yaderna ta radiatsiina bezpeka, 4, 51–54. 5. Dudar,T.V.,Lysychenko,G.V., Buhera,M.A.,2018.Uranium resources of Ukraine: geology, mineralogy, and some mining aspects: monograph. Riga: Lambert Publishing House. – 100 p. 6. Dudar, T. V., 2019. Uranium mining and milling facilities legacy sites: Ukraine case study. Environmental Problems, Volume 4, Number 4, 212–218. DOI: 10.23939/ep2019.04.212 7. Dudar, T. V., Verkhovtsev, V. G., Tyshchenko, Yu.Ye., Ky- selevych L. S., Buglak O. V., 2019. Radon-prone Areas: the Ukrainian Shield case study / European Association of Geoscientists & Engineers. Confer- ence Proceedings, 18th International Conference on Geoinformatics – Theoretical and Applied Aspects. 1–6. DOI: 10.3997/2214-4609.201902034 8. Dudar, T. V., Titarenko, O.V., Nekos, A.N., Vysotska, O.V., Porvan, A.P., 2020. Geospatial modeling of radon- prone areas. Nuclear and radiation safety. Kyiv, Vyp. 3 (87), 28-37. Doi: https://doi.org/10.32918/nrs.2020.3(87).04 9. EC Council Directive 2013/59/Euratom, 2014. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radi- ation. Official J. Eur. Union. 2014; 57 (L13):1–73. 10. European Atlas of Natural Radiation, 2019. European Com- mission, Joint Research Centre – Cinelli, G., De Cort, M. & Tollefsen, T. (Eds.), Publication Office of the European Union, Luxembourg, doi:10.2760/520053, Catalogue number KJ-02-19-425-EN-C, EUR 19425 EN. Printed by Bietlot in Belgium 2019– 190. Pp. 30.1 cm– 42.4 cm. DOI: 10.2760/520053 11. Fomin, Yu. O., Demikhov, Yu. O., Verk- hovtsev, V. G., Dudar, T. V., 2019. Formy znakhodzennya elementiv-suputnykiv uranu u albititakh Ukrainskogo shchita [Forms of finding uranium satellite elements in albitites of the Ukrainian Shield]. Geokhimiya technogeneza: zb. nauk. prats IGNS NAN Ukrainy. Kyiv, Vyp. 2 (30), 106–118. DOI: 10.15407/geo-tech2019.30.106. 12. Fomin, Yu.O., Demikhov Yu.M., Verkhovtsev, V.G., Dudar, T.V., Borisova, Z.M., Kravchuk, Z.M., 2019. Elementy-suputnyky uranovogo zrudeninnya albiti- tovoi formatsii Ukrainskogo shchita ta ikh vplyv na navkolyshne seredovyshche [Рathfinder elements of uranium mineralization from albitite formation of the Ukrainian shield and their impact on the environment]. Ekologichna bezpeka ta pryrodo-korystyvannya: zb. nauk. prats, 33, No 1, 42–58. DOI: 10.32347/2411-4049.2020.1.42-58 13. IAEA, 2018. Map of World distribution of Uranium De- posits. Retrieved from URL: https://www.iaea. org/publications/12314/world-distribution-of- uranium-deposits 14. Kalashnyk, G.A., 2017. Radioekologichna sytuatsiya v misti Kropyvnytskyi – tsentri uranodobuvnoi promyslovosti Ukrainy [Radioecological situation in the city of Kropyvnytskyi – the center of uranium mining of Ukraine]. Mineralni resursy Ukrainy, 2, 43-49. 15. Koshyk, Yu.I., Kryvchykov, V.A., Khudoshina, N.A., 2013. Otsenka vozdeistviya na okruzayushchuyu sredu. Zavod po proizvodstvu yadernogo topliva. Proekt. Tom 8. Zeltie Vodi: GP “UkrNIIpromtech- nologii”, 273. 16. Kovalenko, G.D., 2013. Radioekologiya Ukrainy [Radioecology of Ukraine] Kharkiv: ID “Inzhek”. – 344 p. (in Russian) 17. Lyashenko, V.I., Topolnyi, F.F., Mostipan, M.I., Lisova, T.S., 2011. Ekologichna bezpeka uranovogo vy- robnytstva [Environmental safety of uranium mining]. Monograph. Ed. by F.F. Topolnyi. Kiro- vograd: “KOD”. 240. (in Ukrainian) 18. Mikhailichenko, O.M., 2018. Zvit pro regionalne geo- logichne vyvchennya terytorii Ukrainy “Skladan- nya karty uranovogo i torievogo zrudeninnya Ukrainskogo Shchita masshtabu 1:500 000” [Re- port on the Regional Geological Survey of the Territory of Ukraine “Mapping of the Uranium and Thorium Ore Manifestations of the Ukrai- nian Shield 1: 500,000”]. State-owned Enterprise ‘Kirovgeologiya’. 150. (in Ukrainian) 19. Natsionalnyi Atlas Ukrainy. Rudenko L.G. (Ed.) [National Atlas of Ukraine]. Kyiv: DNVP “Kartographiya”. 435. (in Ukrainian and English) 20. NRBU-97. Normy radiatsiinoi bezpeky Ukrainy – 1997/ D-2000 (DGN 6.6.1-6.5.061-2000) [Norms of Radiation Safety in Ukraine – 1997/D-2000]. Zatverdzeno postanovoyu Golovnogo derzavno- go sanitarnogo likarya Ukrainy vid 12.07.2000 N 116. (in Ukrainian) 21. Podulyakh, S., 2017. Yaderne sertse Ukrainy [Nuclear he- art of Ukraine]. Atomprom Ukrainy. 2, 6-8. (in Ukrainian) 22. Stankevich, S.A., Kharytonov, N.N., Dudar, T.V., Kozlo- va A.A. (2016). Risk Assessment of Land Deg- radation Using Satellite Imagery and Geospa- tial Modelling in Ukraine. In book: Land Degradation and Desertification - a Global Crisis. Edited by Abuid Kaswamila, ISBN 978-953- 51-2707-9, Print ISBN 978-953-51-2706-2, 122 pages, Publisher: InTech . Chapter 3. p.53- 77. DOI: 10.5772/62403 23. Stankevich, S.A., Kharytonov, M.M., Kozlova, A.A., Ko- rovin, V.Yu, Svidenyuk, M.O., Valyaev, A.M., 2018. Soil Contamination Mapping with Hyperspectral Imagery: Pre -Dnieper Chemi- cal Plant (Ukraine) Case Study, Hyperspectral Imaging in Agriculture, Food and Environment, Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vi- dales Contreras, IntechOpen, DOI: 10.5772/ intechopen.72601. https://www.intechopen.com/ books/hyperspectral-imaging-in-agriculture- food-and-environment/soil-contamination- mapping-with-hyperspectral-imagery-pre-dnieper-chemical-plant-ukraine-case-study 24. Stankevich, S.A., Dudar, T.V., Svideniuk, M.O., 2019. Zastosuvannya bagatochasovoi radarnoi interferomet- rii dlya vyyavlennya zmishchennya zemnoi poverkhni dlya terrytorii uranobydobuvannya v Ukraini [Radar interferometry time series analysis for land surface displacement detection within the uranium mining area in Ukraine]. Ecologichna bezpeka, 2/2019(28), 18–23. DOI: 10.30929/2073- 5057.2019.2.18-23 25. Shumlyanskyi, V.O., Subbotin, A.G., Bakarziev, A.H. et al., 2003. Tekhnogenne zabrudnennya radioaktyvnymy elementamy na rodovyshchakh korysnykh kopalyn [Tecnogenic contamination with radioactive elements on the mineral deposits] Kyiv: Znannya Ukrainy. – 133. (in Ukrainian) 26. Shumlyanskyi, V.O., Makarenko, M.M., Kolyabina, I.L. et al., 2007. Monitoryng pryrodnogo seredovyshcha pislya dobuvannya uranu sposobom pidzemnogo vylugovuvannya: monographiya [Monitoring of natural environment after uranium mining through underground leaching: monograph]. Instytut fundamentalnykh doslidzen Ukrainskoi naukoboi asotsiatsii. Kyiv: Logos. 27. Sushchuk, K.G., Verkhovtsev, V.G., 2019. Metalogeniya uranu v fanerozoi planformenoi chastyny Ukrainy [Metalogey of uranium in Phanerozoe of the platfor part of the Ukrainian Shield]. Geochimiya tekhno- genezu. Kyiv, 2 (30), 56-69. 28. TENORM, 2007. Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining. U.S. Environmental Protection Agency. Published on-line as Vol. 2 of EPA 402-R-05-007. Retrieved from URL: https://www.epa.gov/sites/ production/files/2015-05/documents/402-r-08- 005-v2.pdf 29. Verkhovtsev, V.G., Zabulonov et al., 2014. Perspektyvy rozvytku uranovoi syrovynnoi bazy yadernoi energetyky Ukrainy [Prospects for the development of uranium resource base of nuclear power of Ukraine]. Kyiv: Naukova Dumka. 355. (in Ukrainian) 30. WNA, 2020. World Nuclear Association. World Nuclear Reactors and Uranium Requirements, September 2020. Retrieved from URL: http://www.world- nuclear.org/information-library/facts-and-figures. aspxSome aspects of environmental hazard within uranium mining areas are considered. The uranium content in the environment components (rocks, soils, underground and surface waters) of the central part of the Ukrainian Shield within and beyond the uranium mining area is analyzed on the example of the Michurinske ore field. It is emphasized that man-made sources of natural origin should be considered more broadly than just waste dumps from uranium mining and processing enterprises. These are sources of ionizing radiation of natural origin, which have been subjected to concentration or their accessibility has been increased because of anthropogenic activity. Additional irradiation to the natural radiation background is formed. Waste dumps of uranium mining are considered as sources of potential dust pollution in the surface layers of atmosphere with fine dust containing uranium, its decay products and associated elements. The area of waste dumps is calculated using space images. Uranium accumulates in the dusty fraction, where its content is 0.01-0.06%. Taking into account the geological and geochemical characteristics of uranium deposits, radioactive elements, heavy metals and other associated elements of uranium mineralization are car- ried out of the dumps by winds and atmospheric waters with their subsequent migration into environment components. A mathematical model of potential dust air pollution in the area of long-term operation of the oldest uranium mine is presented for the summer 2019. In total, 15 factors influencing the potential threat of air dust pollution are considered and analyzed. The mathematical model is developed on the basis of the method of discriminant functions. To assess the degree of the model parameters informativeness, one-factor covariance analysis is used. It allows assessing the degree of a single sign influence on the prediction result. The developed model takes into account the area of waste dumps, uranium content in the dust fraction and wind direction southeast and/or east as the most hazardous for the study area. The model allows determining correctly the level of potential threat of air dust pollution in 96.3% ± 3.6% of all cases.Розглянуто деякі аспекти екологічної небезпеки в районі видобутку урану та за його межами. Проаналізовано вміст урану в компонентах довкілля (породах, ґрунтах, підземних та поверхневих водах) центральної частини Українського щита на прикладі Мічурінського рудного поля. Наголошено, що техногенно-підсилені джерела природного походження слід розглядати ширше, ніж просто відходи урановидобувних і переробних підприємств. Це джерела іонізуючого випромінювання природного походження, які в результаті антропогенної діяльності були піддані концентруванню або збільшилася їхня доступність, внаслідок чого утворилося додаткове до природного радіаційного фону опромінювання. Породні відвали урановидобування розглядаються як джерела потенційної запиленості приземних шарів атмосфери дрібнодисперсним пилом, який містить уран, продукти його розпаду та супутні елементи. Площа породних відвалів розраховується з використанням космічних знімків. Уран накопичується у пилуватій фракції, де його вміст складає 0.01-0.06%. З урахуванням геолого-геохімічних характеристик уранових родовищ радіоактивні елементи, важкі метали та інші елементи-супутники уранового зруденіння виносяться з відвалів вітрами та атмосферними водами з подальшою їх міграцією у компоненти довкілля. Розроблено математичну модель потенційного пилового забруднення повітря в районі довготривалого функціонування найстарішої урановидобувної шахти, за літній період 2019 року. Загалом розглянуто та проаналізовано 15 факторів, що впливають на потенційну загрозу запиленості повітря. Математичну модель розроблено на базі методу дискримінантних функцій. Для оцінки ступеня інформативності параметрів моделі був використаний однофакторний дисперсійний аналіз, що дозволяє оцінити ступінь впливу окремо взятої ознаки на результат прогнозування. Розроблена модель, що враховує площу відвалів, вміст урану в пилуватій фракції та напрям вітру південно-східний та/або східний як найбільш небезпечний для досліджуваної території, коректно дозволяє визначити рівень потенційної загрози запиленості повітря у 96,3%±3,6% усіх випадкі

    Геопросторове моделювання радононебезпечної території

    No full text
    EC Council Directive 2013/59/Euratom (2014). Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. Official J. Eur. Union, 57(L13), 1–73. Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., De Cort, M. (2019). Digital version of the European Atlas of natural radiation. J. Environ Radioact, 196:240-252. doi: 10.1016/j.jenvrad.2018.02.008. Szabó, K.Z., Jordan, G., Horváth, Á., Szabó, C. (2014). Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary. J. Environ. Radioact, 129, pp. 107–120. Garcia-Talavera, M., Garca-Perez, A., Rey, C., Ramos, L. (2013). Mapping radon-prone areas using γ-radiation dose rate and geological information. J. Radiol. Prot., 33, pp. 605–620. Pavlenko, T. A., Los, I. P., Aksenov, N. V. (1997). Exposure doses due to indoor Rn-222 in Ukraine and basic directions for their decrease. Radiat. Meas., 28, pp. 733-738. Pavlenko, T., German, O., Fruziuk, M., Aksenov, N., Operchyuk, A. (2014). The Ukrainian Pilot Project “Stop Radon”. Nuclear Technology&Radiation Protection, 29(2), 1-7. Molchanov, O., Soroka, Y., Buzinny, M., Pavlenko, T., Podrezov, A., Soroka, M. (2010). Dispersion of radon in the atmosphere around old uranium mill tailings. Nukleonika, 55(4), 535-538. Orliuk, M. I., Marchenko, A. V., Yatsevskyi, P. I. (2018). Radon and geomagnetic anomalies in Ukraine. Dopovidi NAS of Ukraine, 5, pp. 60-66. Lebed, O. O. Myslinchuk, V. O., Andreev, O. A. (2017). Radon: monitoring and geoecological analysis of its impact on the ecosystem of the city of Rivne. Monograph, RMANUM, 208. Kovalenko, G. D. (2013). Radioecology of Ukraine: Monograph. Kharkiv, INZEK, 344. Titarenko, O. V. (2014). Operational assessment of geoecological state of Krivyi Rig city by remote sensing techniques. Dopovidi NASU, 9, pp. 74-78. Verkhovtsev, V. G., Yuskiv, Yu. V. (2016). Surveying aspects of currently active geostructures of the Ukrainian Shield and its slopes. Ukrainian Journal of Earth Remote Sensing, 8, pp. 43–46. Verkhovtsev, et al. (2014). Prospects for the development of uranium resource base of nuclear power of Ukraine. Kyiv, Naukova Dumka, 355. Clavensjoe, B., Aakerblom, G. (2003). Radon book. Measures against radon in existing buildings. Stockholm, FORMAS, 131. Fryziuk, M. A., Aksionov, N. V., Fedorenko, O. V., Slinchenko, V. A., Chuchupal, I. I. (2018). Estimation of the radon concentrations in children educational institutions of Kropyvnytskyi city for radon protective actions. Environment and Health, 3(88), 56-62. Dudar, T. V. (2019). Uranium mining and milling facilities legacy sites: Ukraine case study. Environmental Problems, 4, pp. 212–218. doi: 10.23939/ep2019.04.212. Dudar, T. V. Verkhovtsev, V. G. Lysychenko, G. V. Tyshchenko, Yu. Ye. (2018). Radon emanation as a source of radiation hazard to the environment. Information & Security: An International Journal. doi: 10.11610/isij.410x. Dudar, T. V., Verkhovtsev, V. G., Tyshchenko, Yu. Ye., Kyselevych, L. S., Buglak O. V. (2019). Radon-prone areas: the Ukrainian Shield case study. XVIIIth International conference “Geoinformatics: Theoretical and Applied Aspects”, Kyiv, Ukraine. Voinovskyi, A. S., Bochai, L. V., Nechaev, S. V. et. al. (2002). Comprehensive metallogenic map of Ukraine. Scale 1: 500,000. Explanatory note, Kyiv, UkrDGRI, State Geological Survey of the Ministry of Resources of Ukraine, 336. Shumlyanskyi, V. O., Subbotin, A. G., Bakarzhiev, A. H. et. al. (2003).Technogenic contamination with radioactive elements in mineral ore deposits. Kyiv, Znannia Ukrainy, 113. Mikhailichenko, O.M. (2018). Report on the Regional Geological Survey of the Territory of Ukraine “Mapping of the Uranium and Thorium Ore Manifestations of the Ukrainian Shield 1: 500,000”. State Enterprise ‘Kirovheolohiia’, 150. Fomin, Yu. O., Demikhov, Yu. M., Verkhovtsev, V. G., Dudar, T. V. (2019). Forms of uranium trace elements in albitites of the Ukrainian Shield. Geochemistry of Technogenesis, Collection of research papers of IEG NAS of Ukraine, Kyiv, 2(30), 106-118. Nosov, K., Zholtkevych, G., Georgiyants, M., Vysotska, O., Balym, Yu., Porvan A. (2017). Development of the descriptive binary model and its application for identification of clumps of toxic cyanobacteria. Eastern-European Journal of Enterprise Technologies, 4(88), 4-11. doi: 10.15587/1729-4061.2017.108285. Nekos, A., Shulika, B., Porvan, A., Vysotska, O., Zhemerov, O. (2017). Control over grape yield in the north-eastern region of Ukraine using mathematical modeling. Eastern-European Journal of Enterprise Technologies, 3(86), 51-59. doi: 10.15587/1729-4061.2017.97969. Vуsotska, O., Georgiyants, M., Nosov, K. et. al. (2018). Development of a spatial ¬dynamical model of the structure of clumps of toxic cyanobacteria for biosafty. Eastern-European Journal of Enterprise Technologies, 10(96), 64-75. doi: 10.15587/1729-4061.2018.150273. Marija J. Norušis (2011). IBM SPSS Statistics 19 Guide to Data Analysis. Pearson Prentice Hall, 651. Balym, Y., Georgiyants, M., Vуsotska, O., Pecherska, A., Porvan, A. (2017). Mathematical modeling of the colorimetric parameters for remote control over the state of natural bioplato. Eastern-European Journal of Enterprise Technologies. 10(88), 29-36. doi: 10.15587/1729-4061.2017.108415.Methods for identification of potentially radon-prone areas using geospatial analysis in ArcGIS 10.6 software environment and mathematical modeling in SPSS 19.0 on the example of high background radiation area have been developed. High level of natural radioactivity associated with uranium content in environment objects and natural uranium occurrences, and also the spatial density of faults (reliable and unreliable) and lineaments were taken into account as well as the distance from uranium mine located nearby. The method of linear discriminant functions was used to make a math model for determining the level of radon hazard. To do this, data on all locations were divided into training and test samples. Determination of predictors of the mathematical model was performed using Fisher's criterion by their sequential inclusion in discriminant equations. Among the considered 13 factors of radon hazard, seven of them turned out to be informative. For them, canonical coefficients were calculated using the least squares method for first- and second- order polynomials. Based on the values of discriminant functions, a territorial map was constructed to assign the new location to a certain level of radon hazard. The maps obtained present the correlation of the radon-prone areas with the zones of high spatial density of faults and lineaments, and confirmed by the data of direct indoor radon measurements. In a limited number of measurements, the methods might get a good help in prioritization for round-the-country radon survey. As far as the model for identification of potentially radon-prone areas is mainly based on geological studies, the further research is supposed to be directed to its approbation for a different geological environment of the Ukrainian shield.Розроблено методику ідентифікації потенційно радононебезпечних територій з використанням геопросторового аналізу в програмному середовищі ArcGIS 10.6 та математичного моделювання в програмному середовищі SPSS 19.0 на прикладі території з високим рівнем природної радіоактивності. Основними параметрами для початкового етапу картування пропонується просторова щільність розломів та просторова щільність лінеаментів 3-4 порядків. Інші параметри додаються для більш детального аналізу, залежно від конкретної локації, що розглядається. Отримані карти показують позитивну кореляцію радононебезпечних ділянок із зонами високої просторової щільності розломів та лінеаментів та підтверджуються даними безпосередніх замірів радону в приміщеннях. За умови обмеженої кількості вимірювань, ця методика може бути корисною у визначенні пріоритетності для радонової зйомки по країні
    corecore