5 research outputs found

    RNASwift: a rapid, versatile RNA extraction method free from phenol and chloroform.

    Get PDF
    RNASwift is an inexpensive, versatile method for the rapid extraction of RNA. Existing RNA extraction methods typically use hazardous chemicals including phenol, chloroform and formamide which are often difficult to completely remove from the extracted RNA. RNASwift uses sodium chloride and sodium dodecyl sulphate to lyse the cells and isolate the RNA from the abundant cellular components in conjunction with solid phase extraction or isopropanol precipitation to rapidly purify the RNA. Moreover, the purified RNA is directly compatible with downstream analysis. Using spectrophotometry in conjunction with ion pair reverse phase chromatography to analyse the extracted RNA, we show that RNASwift extracts and purifies RNA of higher quality and purity in comparison to alternative RNA extraction methods. The RNASwift method yields approximately 25 μg of RNA from only 10(8)Escherichia coli cells. Furthermore, RNASwift is versatile; the same simple reagents can be used to rapidly extract RNA from a variety of different cells including bacterial, yeast and mammalian cells. In addition to the extraction of total RNA, the RNASwift method can also be used to extract double stranded RNA from genetically modified E. coli in higher yields compared to alternative methods

    Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry

    Get PDF
    RNA interference has provided valuable insight into a wide range of biological systems and is a powerful tool for the analysis of gene function. The exploitation of this pathway to block the expression of specific gene targets holds considerable promise for the development of novel RNAi-based insect management strategies. In addition, there are a wide number of future potential applications of RNAi to control agricultural insect pests as well as its use for prevention of diseases in beneficial insects. The potential to synthesise large quantities of dsRNA by in-vitro transcription or in bacterial systems for RNA interference applications has generated significant demand for the development and application of high throughput analytical tools for the rapid extraction, purification and analysis of dsRNA. Here we have developed analytical methods that enable the rapid purification of dsRNA from associated impurities from bacterial cells in conjunction with downstream analyses. We have optimised TRIzol extractions in conjunction with a single step protocol to remove contaminating DNA and ssRNA, using RNase T1/DNase I digestion under high-salt conditions in combination with solid phase extraction to purify the dsRNA. In addition, we have utilised and developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. Furthermore, we have optimised base-specific cleavage of dsRNA by RNase A and developed a novel method utilising RNase T1 for RNase mass mapping approaches to further characterise the dsRNA using liquid chromatography interfaced with mass spectrometry

    Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides

    Get PDF
    Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides

    Analysis of long dsRNA produced in vitro and in vivo using atomic force microscopy in conjunction with ion-pair reverse-phase HPLC

    Get PDF
    Long double-stranded (ds) RNA is emerging as a novel alternative to chemical and genetically-modified insect and fungal management strategies. The ability to produce large quantities of dsRNA in either bacterial systems, by in vitro transcription, in cell-free systems or in planta for RNA interference applications has generated significant demand for the development and application of analytical tools for analysis of dsRNA. We have utilised atomic force microscopy (AFM) in conjunction with ion-pair reverse-phase high performance liquid chromatography (IP-RP-HPLC) to provide novel insight into dsRNA for RNAi applications. The AFM analysis enabled direct structural characterisation of the A-form duplex dsRNA and accurate determination of the dsRNA duplex length. Moreover, further analysis under non-denaturing conditions revealed the presence of heterogeneous dsRNA species. IP-RP-HPLC fractionation and AFM analysis revealed that these alternative RNA species do not arise from different lengths of individual dsRNA molecules in the product, but represent misannealed RNA species that present as larger assemblies or multimeric forms of the RNA. These results for the first time provide direct structural insight into dsRNA produced both in vivo in bacterial systems and in vitro, highlighting the structural heterogeneity of RNA produced. These results are the first example of detailed characterisation of the different forms of dsRNA from two production systems and establish atomic force microscopy as an important tool for the characterisation of long dsRNA

    High resolution fingerprinting of single and double-stranded RNA using ion-pair reverse-phase chromatography

    Get PDF
    The emergence of new sustainable approaches for insect management using RNA interference (RNAi) based insecticides has created the demand for high through put analytical techniques to fully characterise and accurately quantify double stranded RNA (dsRNA) prior to downstream RNAi applications. In this study we have developed a method for the rapid characterisation of single stranded and double stranded RNA using high resolution RNase mapping in conjunction with ion-pair reverse-phase chromatography utilising a column with superficially porous particles. The high resolution oligoribonucleotide map provides an important ‘fingerprint’ for identity testing and bioprocess monitoring. Reproducible RNA mapping chromatograms were generated from replicate analyses. Moreover, this approach was used to provide a method to rapidly distinguish different RNA sequences of the same size, based on differences in the resulting chromatograms. Principal components analysis of the high resolution RNA mapping data enabled us to rapidly compare multiple HPLC chromatograms and distinguish two dsRNA sequences of different size which share 72% sequence homology. We used the high resolution RNase mapping method to rapidly fingerprint biomanufactured dsRNA across a number of different batches. The resulting chromatograms in conjunction with principal components analysis demonstrated high similarity in the dsRNA produced across the different batches highlighting the potential ability of this method to provide information for batch release in a high throughput manner
    corecore