2 research outputs found

    Foxp3 Silencing with Antisense Oligonucleotide Improves Immunogenicity of an Adjuvanted Recombinant Vaccine against Sporothrix schenckii

    Get PDF
    Background: In recent years, there has been great interest in developing molecular adjuvants based on antisense oligonucleotides (ASOs) targeting immunosuppressor pathways with inhibitory effects on regulatory T cells (Tregs) to improve immunogenicity and vaccine efficacy. We aim to evaluate the immunostimulating effect of 2′OMe phosphorothioated Foxp3-targeted ASO in an antifungal adjuvanted recombinant vaccine. Methods: The uptake kinetics of Foxp3 ASO, its cytotoxicity and its ability to deplete Tregs were evaluated in murine splenocytes in vitro. Groups of mice were vaccinated with recombinant enolase (Eno) of Sporothix schenckii in Montanide Gel 01 adjuvant alone or in combination with either 1 µg or 8 µg of Foxp3 ASO. The titers of antigen-specific antibody in serum samples from vaccinated mice (male C57BL/6) were determined by ELISA (enzyme-linked immunosorbent assay). Cultured splenocytes from each group were activated in vitro with Eno and the levels of IFN-γ and IL-12 were also measured by ELISA. The results showed that the anti-Eno antibody titer was significantly higher upon addition of 8 µM Foxp3 ASO in the vaccine formulation compared to the standard vaccine without ASO. In vitro and in vivo experiments suggest that Foxp3 ASO enhances specific immune responses by means of Treg depletion during vaccination. Conclusion: Foxp3 ASO significantly enhances immune responses against co-delivered adjuvanted recombinant Eno vaccine and it has the potential to improve vaccine immunogenicity

    Adjuvants and delivery systems for antifungal vaccines: Current state and future developments

    No full text
    Mycoses are gaining increasing attention in modern medicine because of the increase in diseases associated with opportunistic fungal infections. Despite the recognized role of the immune system in the control of fungal infections, no antifungal vaccines are currently licensed for use in humans. However, numerous vaccine candidates are being developed in many laboratories, as proof of the renewed interest in integrating or replacing chemotherapy with vaccines to reduce antibiotic use and consequently limit drug resistance and toxicity. In the effort to use safer and simpler fungal antigens for vaccinations, adjuvants have become relevant as immunostimulators to elicit successful protective immune responses. To address the relevant role of adjuvants as determinants in the balance of vaccine efficacy and safety, an updated and critical review of the adjuvants used in preclinical antifungal vaccines is presented, and prospective trends are addressed. Selected recent papers and other historically relevant and innovative strategies using adjuvants in experimental fungal vaccines are highlighted.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore