20 research outputs found

    Differences in Immunoglobulin Light Chain Species Found in Urinary Exosomes in Light Chain Amyloidosis (AL)

    Get PDF
    Renal involvement is a frequent consequence of plasma cell dyscrasias. The most common entities are light chain amyloidosis, monoclonal immunoglobulin deposition disease and myeloma cast nephropathy. Despite a common origin, each condition has its own unique histologic and pathophysiologic characteristic which requires a renal biopsy to distinguish. Recent studies have shown urinary exosomes containing kidney-derived membrane and cytosolic proteins that can be used to probe the proteomics of the entire urinary system from the glomerulus to the bladder. In this study, we analyzed urine exosomes to determine the differences between exosomes from patients with light chain amyloidosis, multiple myeloma, monoclonal gammopathy of undetermined significance, and non-paraproteinemia related kidney disease controls. In patients with light chain amyloidosis, multiple myeloma and monoclonal gammopathy of undetermined significance, immunoreactive proteins corresponding to monomeric light chains were found in exosomes by western blot. In all of the amyloidosis samples with active disease, high molecular weight immunoreactive species corresponding to a decamer were found which were not found in exosomes from the other diseases or in amyloidosis exosomes from patients in remission. Few or no light chains monomeric bands were found in non-paraproteinemia related kidney disease controls. Our results showed that urinary exosomes may have tremendous potential in furthering our understanding of the pathophysiology and diagnosis of plasma cell dyscrasia related kidney diseases

    Conservation and divergence within the clathrin interactome of <i>Trypanosoma cruzi</i>

    Get PDF
    Trypanosomatids are parasitic protozoa with a significant burden on human health. African and American trypanosomes are causative agents of Nagana and Chagas disease respectively, and speciated about 300 million years ago. These parasites have highly distinct life cycles, pathologies, transmission strategies and surface proteomes, being dominated by the variant surface glycoprotein (African) or mucins (American) respectively. In African trypanosomes clathrin-mediated trafficking is responsible for endocytosis and post-Golgi transport, with several mechanistic aspects distinct from higher organisms. Using clathrin light chain (TcCLC) and EpsinR (TcEpsinR) as affinity handles, we identified candidate clathrin-associated proteins (CAPs) in Trypanosoma cruzi; the cohort includes orthologs of many proteins known to mediate vesicle trafficking, but significantly not the AP-2 adaptor complex. Several trypanosome-specific proteins common with African trypanosomes, were also identified. Fluorescence microscopy revealed localisations for TcEpsinR, TcCLC and TcCHC at the posterior region of trypomastigote cells, coincident with the flagellar pocket and Golgi apparatus. These data provide the first systematic analysis of clathrin-mediated trafficking in T. cruzi, allowing comparison between protein cohorts and other trypanosomes and also suggest that clathrin trafficking in at least some life stages of T. cruzi may be AP-2-independent

    Differential Association between HERG and KCNE1 or KCNE2

    Get PDF
    The small proteins encoded by KCNE1 and KCNE2 have both been proposed as accessory subunits for the HERG channel. Here we report our investigation into the cell biology of the KCNE-HERG interaction. In a co-expression system, KCNE1 was more readily co-precipitated with co-expressed HERG than was KCNE2. When forward protein trafficking was prevented (either by Brefeldin A or engineering an ER-retention/retrieval signal onto KCNE cDNA) the intracellular abundance of KCNE2 and its association with HERG markedly increased relative to KCNE1. HERG co-localized more completely with KCNE1 than with KCNE2 in all the membrane-processing compartments of the cell (ER, Golgi and plasma membrane). By surface labeling and confocal immunofluorescence, KCNE2 appeared more abundant at the cell surface compared to KCNE1, which exhibited greater co-localization with the ER-marker calnexin. Examination of the extracellular culture media showed that a significant amount of KCNE2 was extracellular (both soluble and membrane-vesicle-associated). Taken together, these results suggest that during biogenesis of channels HERG is more likely to assemble with KCNE1 than KCNE2 due to distinctly different trafficking rates and retention in the cell rather than differences in relative affinity. The final channel subunit constitution, in vivo, is likely to be determined by a combination of relative cell-to-cell expression rates and differential protein processing and trafficking

    Trypanosoma cruzi Epimastigotes Are Able to Store and Mobilize High Amounts of Cholesterol in Reservosome Lipid Inclusions

    Get PDF
    Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol crystals in foam cells.Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy, we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped ones.Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation

    The AAA-ATPase VPS4 Regulates Extracellular Secretion and Lysosomal Targeting of α-Synuclein

    Get PDF
    Many neurodegenerative diseases share a common pathological feature: the deposition of amyloid-like fibrils composed of misfolded proteins. Emerging evidence suggests that these proteins may spread from cell-to-cell and encourage the propagation of neurodegeneration in a prion-like manner. Here, we demonstrated that α-synuclein (αSYN), a principal culprit for Lewy pathology in Parkinson's disease (PD), was present in endosomal compartments and detectably secreted into the extracellular milieu. Unlike prion protein, extracellular αSYN was mainly recovered in the supernatant fraction rather than in exosome-containing pellets from the neuronal culture medium and cerebrospinal fluid. Surprisingly, impaired biogenesis of multivesicular body (MVB), an organelle from which exosomes are derived, by dominant-negative mutant vacuolar protein sorting 4 (VPS4) not only interfered with lysosomal targeting of αSYN but facilitated αSYN secretion. The hypersecretion of αSYN in VPS4-defective cells was efficiently restored by the functional disruption of recycling endosome regulator Rab11a. Furthermore, both brainstem and cortical Lewy bodies in PD were found to be immunoreactive for VPS4. Thus, VPS4, a master regulator of MVB sorting, may serve as a determinant of lysosomal targeting or extracellular secretion of αSYN and thereby contribute to the intercellular propagation of Lewy pathology in PD

    Independent motile microplast formation correlates with glioma cell invasiveness

    No full text
    Diffuse brain invasion co ntributes to the poor prognosis for patients with gliomas. Analyzing glioma cell migration in vitro, we have demonstrated the spontaneous shedding of anucleate cell fragments that separate from glioma cell bodies and maintain viability from hours to days. Unlike previously described cell fragments that are released from cells as diffusible vectors, glioma cell fragments are independently motile. We used computerized time-lapse microscopy to characterize the formation of these independent motile microplasts (IMMPs) in human cell cultures derived from the most highly invasive glial tumor, glioblastoma. IMMPs were larger than previously described cell fragments, ranging in size from approximately 2% to nearly half of the area of their parent cells. Complex cell-like behaviors—including establishment of polarity, extension of lamellipodia and filopodia, and change in direction of movement—remained intact in IMMPs. The average direction and velocity of the IMMPs were indistinguishable from those of their parent cells. IMMPs formed at a significantly higher rate in glioma cell lines rendered more invasive by overexpression of invasion-related genes than in vector-transfected controls. The correlation with cell invasiveness indicates that IMMP formation may be related to the cell-invasive phenotype. Further investigation will determine whether IMMPs represent a novel addition to the growing list of viable cell fragments with biological relevance
    corecore